L(s) = 1 | − 4.48·2-s − 3.05·3-s + 12.0·4-s + 15.8·5-s + 13.6·6-s + 14.1·7-s − 18.3·8-s − 17.6·9-s − 71.0·10-s − 11·11-s − 36.9·12-s − 63.6·14-s − 48.4·15-s − 14.4·16-s − 5.15·17-s + 79.1·18-s + 53.7·19-s + 191.·20-s − 43.3·21-s + 49.3·22-s − 17.9·23-s + 56.1·24-s + 126.·25-s + 136.·27-s + 171.·28-s − 134.·29-s + 217.·30-s + ⋯ |
L(s) = 1 | − 1.58·2-s − 0.587·3-s + 1.51·4-s + 1.41·5-s + 0.931·6-s + 0.766·7-s − 0.811·8-s − 0.654·9-s − 2.24·10-s − 0.301·11-s − 0.889·12-s − 1.21·14-s − 0.833·15-s − 0.225·16-s − 0.0735·17-s + 1.03·18-s + 0.649·19-s + 2.14·20-s − 0.450·21-s + 0.477·22-s − 0.162·23-s + 0.477·24-s + 1.00·25-s + 0.972·27-s + 1.15·28-s − 0.862·29-s + 1.32·30-s + ⋯ |
Λ(s)=(=(1859s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1859s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1+11T |
| 13 | 1 |
good | 2 | 1+4.48T+8T2 |
| 3 | 1+3.05T+27T2 |
| 5 | 1−15.8T+125T2 |
| 7 | 1−14.1T+343T2 |
| 17 | 1+5.15T+4.91e3T2 |
| 19 | 1−53.7T+6.85e3T2 |
| 23 | 1+17.9T+1.21e4T2 |
| 29 | 1+134.T+2.43e4T2 |
| 31 | 1−43.3T+2.97e4T2 |
| 37 | 1+161.T+5.06e4T2 |
| 41 | 1−308.T+6.89e4T2 |
| 43 | 1+27.9T+7.95e4T2 |
| 47 | 1−139.T+1.03e5T2 |
| 53 | 1+165.T+1.48e5T2 |
| 59 | 1+542.T+2.05e5T2 |
| 61 | 1−655.T+2.26e5T2 |
| 67 | 1+969.T+3.00e5T2 |
| 71 | 1+174.T+3.57e5T2 |
| 73 | 1+1.01e3T+3.89e5T2 |
| 79 | 1−53.3T+4.93e5T2 |
| 83 | 1+1.11e3T+5.71e5T2 |
| 89 | 1−841.T+7.04e5T2 |
| 97 | 1+1.20e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.694301456747066407399192076110, −7.85139127117387397092521209795, −7.10059876955163562285674731535, −6.09414044742117494344048091759, −5.58253031895315692166379351782, −4.66684942791016465101367318171, −2.86009734879967599207534522284, −1.93964744894277708900593668943, −1.18331237775793858311077900873, 0,
1.18331237775793858311077900873, 1.93964744894277708900593668943, 2.86009734879967599207534522284, 4.66684942791016465101367318171, 5.58253031895315692166379351782, 6.09414044742117494344048091759, 7.10059876955163562285674731535, 7.85139127117387397092521209795, 8.694301456747066407399192076110