Properties

Label 2-1859-1.1-c3-0-271
Degree $2$
Conductor $1859$
Sign $-1$
Analytic cond. $109.684$
Root an. cond. $10.4730$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.48·2-s − 3.05·3-s + 12.0·4-s + 15.8·5-s + 13.6·6-s + 14.1·7-s − 18.3·8-s − 17.6·9-s − 71.0·10-s − 11·11-s − 36.9·12-s − 63.6·14-s − 48.4·15-s − 14.4·16-s − 5.15·17-s + 79.1·18-s + 53.7·19-s + 191.·20-s − 43.3·21-s + 49.3·22-s − 17.9·23-s + 56.1·24-s + 126.·25-s + 136.·27-s + 171.·28-s − 134.·29-s + 217.·30-s + ⋯
L(s)  = 1  − 1.58·2-s − 0.587·3-s + 1.51·4-s + 1.41·5-s + 0.931·6-s + 0.766·7-s − 0.811·8-s − 0.654·9-s − 2.24·10-s − 0.301·11-s − 0.889·12-s − 1.21·14-s − 0.833·15-s − 0.225·16-s − 0.0735·17-s + 1.03·18-s + 0.649·19-s + 2.14·20-s − 0.450·21-s + 0.477·22-s − 0.162·23-s + 0.477·24-s + 1.00·25-s + 0.972·27-s + 1.15·28-s − 0.862·29-s + 1.32·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1859 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1859 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1859\)    =    \(11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(109.684\)
Root analytic conductor: \(10.4730\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1859,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 + 11T \)
13 \( 1 \)
good2 \( 1 + 4.48T + 8T^{2} \)
3 \( 1 + 3.05T + 27T^{2} \)
5 \( 1 - 15.8T + 125T^{2} \)
7 \( 1 - 14.1T + 343T^{2} \)
17 \( 1 + 5.15T + 4.91e3T^{2} \)
19 \( 1 - 53.7T + 6.85e3T^{2} \)
23 \( 1 + 17.9T + 1.21e4T^{2} \)
29 \( 1 + 134.T + 2.43e4T^{2} \)
31 \( 1 - 43.3T + 2.97e4T^{2} \)
37 \( 1 + 161.T + 5.06e4T^{2} \)
41 \( 1 - 308.T + 6.89e4T^{2} \)
43 \( 1 + 27.9T + 7.95e4T^{2} \)
47 \( 1 - 139.T + 1.03e5T^{2} \)
53 \( 1 + 165.T + 1.48e5T^{2} \)
59 \( 1 + 542.T + 2.05e5T^{2} \)
61 \( 1 - 655.T + 2.26e5T^{2} \)
67 \( 1 + 969.T + 3.00e5T^{2} \)
71 \( 1 + 174.T + 3.57e5T^{2} \)
73 \( 1 + 1.01e3T + 3.89e5T^{2} \)
79 \( 1 - 53.3T + 4.93e5T^{2} \)
83 \( 1 + 1.11e3T + 5.71e5T^{2} \)
89 \( 1 - 841.T + 7.04e5T^{2} \)
97 \( 1 + 1.20e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.694301456747066407399192076110, −7.85139127117387397092521209795, −7.10059876955163562285674731535, −6.09414044742117494344048091759, −5.58253031895315692166379351782, −4.66684942791016465101367318171, −2.86009734879967599207534522284, −1.93964744894277708900593668943, −1.18331237775793858311077900873, 0, 1.18331237775793858311077900873, 1.93964744894277708900593668943, 2.86009734879967599207534522284, 4.66684942791016465101367318171, 5.58253031895315692166379351782, 6.09414044742117494344048091759, 7.10059876955163562285674731535, 7.85139127117387397092521209795, 8.694301456747066407399192076110

Graph of the $Z$-function along the critical line