L(s) = 1 | − 2.83·2-s + 8.17·3-s + 0.0460·4-s − 2.30·5-s − 23.1·6-s + 3.15·7-s + 22.5·8-s + 39.8·9-s + 6.55·10-s − 11·11-s + 0.376·12-s − 8.95·14-s − 18.8·15-s − 64.3·16-s − 127.·17-s − 113.·18-s + 108.·19-s − 0.106·20-s + 25.8·21-s + 31.2·22-s − 19.0·23-s + 184.·24-s − 119.·25-s + 105.·27-s + 0.145·28-s + 197.·29-s + 53.5·30-s + ⋯ |
L(s) = 1 | − 1.00·2-s + 1.57·3-s + 0.00576·4-s − 0.206·5-s − 1.57·6-s + 0.170·7-s + 0.997·8-s + 1.47·9-s + 0.207·10-s − 0.301·11-s + 0.00906·12-s − 0.171·14-s − 0.325·15-s − 1.00·16-s − 1.82·17-s − 1.48·18-s + 1.30·19-s − 0.00118·20-s + 0.268·21-s + 0.302·22-s − 0.172·23-s + 1.56·24-s − 0.957·25-s + 0.749·27-s + 0.000982·28-s + 1.26·29-s + 0.325·30-s + ⋯ |
Λ(s)=(=(1859s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1859s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1+11T |
| 13 | 1 |
good | 2 | 1+2.83T+8T2 |
| 3 | 1−8.17T+27T2 |
| 5 | 1+2.30T+125T2 |
| 7 | 1−3.15T+343T2 |
| 17 | 1+127.T+4.91e3T2 |
| 19 | 1−108.T+6.85e3T2 |
| 23 | 1+19.0T+1.21e4T2 |
| 29 | 1−197.T+2.43e4T2 |
| 31 | 1−262.T+2.97e4T2 |
| 37 | 1+213.T+5.06e4T2 |
| 41 | 1+227.T+6.89e4T2 |
| 43 | 1+213.T+7.95e4T2 |
| 47 | 1−326.T+1.03e5T2 |
| 53 | 1+137.T+1.48e5T2 |
| 59 | 1−234.T+2.05e5T2 |
| 61 | 1+406.T+2.26e5T2 |
| 67 | 1+625.T+3.00e5T2 |
| 71 | 1+399.T+3.57e5T2 |
| 73 | 1+583.T+3.89e5T2 |
| 79 | 1−578.T+4.93e5T2 |
| 83 | 1+103.T+5.71e5T2 |
| 89 | 1−660.T+7.04e5T2 |
| 97 | 1+1.18e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.647560231611616672387677233888, −7.946420339571388207867923199666, −7.40045109058576079872149631763, −6.50006366213834006974200185846, −4.92598468981180686210154266998, −4.24873587661639734397123478588, −3.20444003096770659410597714698, −2.27986668673898367855715885948, −1.36381245306145200242025705524, 0,
1.36381245306145200242025705524, 2.27986668673898367855715885948, 3.20444003096770659410597714698, 4.24873587661639734397123478588, 4.92598468981180686210154266998, 6.50006366213834006974200185846, 7.40045109058576079872149631763, 7.946420339571388207867923199666, 8.647560231611616672387677233888