Properties

Label 2-1859-1.1-c3-0-300
Degree $2$
Conductor $1859$
Sign $-1$
Analytic cond. $109.684$
Root an. cond. $10.4730$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.83·2-s + 8.17·3-s + 0.0460·4-s − 2.30·5-s − 23.1·6-s + 3.15·7-s + 22.5·8-s + 39.8·9-s + 6.55·10-s − 11·11-s + 0.376·12-s − 8.95·14-s − 18.8·15-s − 64.3·16-s − 127.·17-s − 113.·18-s + 108.·19-s − 0.106·20-s + 25.8·21-s + 31.2·22-s − 19.0·23-s + 184.·24-s − 119.·25-s + 105.·27-s + 0.145·28-s + 197.·29-s + 53.5·30-s + ⋯
L(s)  = 1  − 1.00·2-s + 1.57·3-s + 0.00576·4-s − 0.206·5-s − 1.57·6-s + 0.170·7-s + 0.997·8-s + 1.47·9-s + 0.207·10-s − 0.301·11-s + 0.00906·12-s − 0.171·14-s − 0.325·15-s − 1.00·16-s − 1.82·17-s − 1.48·18-s + 1.30·19-s − 0.00118·20-s + 0.268·21-s + 0.302·22-s − 0.172·23-s + 1.56·24-s − 0.957·25-s + 0.749·27-s + 0.000982·28-s + 1.26·29-s + 0.325·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1859 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1859 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1859\)    =    \(11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(109.684\)
Root analytic conductor: \(10.4730\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1859,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 + 11T \)
13 \( 1 \)
good2 \( 1 + 2.83T + 8T^{2} \)
3 \( 1 - 8.17T + 27T^{2} \)
5 \( 1 + 2.30T + 125T^{2} \)
7 \( 1 - 3.15T + 343T^{2} \)
17 \( 1 + 127.T + 4.91e3T^{2} \)
19 \( 1 - 108.T + 6.85e3T^{2} \)
23 \( 1 + 19.0T + 1.21e4T^{2} \)
29 \( 1 - 197.T + 2.43e4T^{2} \)
31 \( 1 - 262.T + 2.97e4T^{2} \)
37 \( 1 + 213.T + 5.06e4T^{2} \)
41 \( 1 + 227.T + 6.89e4T^{2} \)
43 \( 1 + 213.T + 7.95e4T^{2} \)
47 \( 1 - 326.T + 1.03e5T^{2} \)
53 \( 1 + 137.T + 1.48e5T^{2} \)
59 \( 1 - 234.T + 2.05e5T^{2} \)
61 \( 1 + 406.T + 2.26e5T^{2} \)
67 \( 1 + 625.T + 3.00e5T^{2} \)
71 \( 1 + 399.T + 3.57e5T^{2} \)
73 \( 1 + 583.T + 3.89e5T^{2} \)
79 \( 1 - 578.T + 4.93e5T^{2} \)
83 \( 1 + 103.T + 5.71e5T^{2} \)
89 \( 1 - 660.T + 7.04e5T^{2} \)
97 \( 1 + 1.18e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.647560231611616672387677233888, −7.946420339571388207867923199666, −7.40045109058576079872149631763, −6.50006366213834006974200185846, −4.92598468981180686210154266998, −4.24873587661639734397123478588, −3.20444003096770659410597714698, −2.27986668673898367855715885948, −1.36381245306145200242025705524, 0, 1.36381245306145200242025705524, 2.27986668673898367855715885948, 3.20444003096770659410597714698, 4.24873587661639734397123478588, 4.92598468981180686210154266998, 6.50006366213834006974200185846, 7.40045109058576079872149631763, 7.946420339571388207867923199666, 8.647560231611616672387677233888

Graph of the $Z$-function along the critical line