Properties

Label 2-1859-1.1-c3-0-252
Degree $2$
Conductor $1859$
Sign $-1$
Analytic cond. $109.684$
Root an. cond. $10.4730$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.78·2-s − 0.436·3-s − 4.81·4-s + 13.8·5-s + 0.779·6-s − 6.26·7-s + 22.8·8-s − 26.8·9-s − 24.6·10-s − 11·11-s + 2.10·12-s + 11.1·14-s − 6.03·15-s − 2.29·16-s + 7.27·17-s + 47.8·18-s − 91.0·19-s − 66.4·20-s + 2.73·21-s + 19.6·22-s + 157.·23-s − 9.98·24-s + 65.6·25-s + 23.4·27-s + 30.1·28-s + 206.·29-s + 10.7·30-s + ⋯
L(s)  = 1  − 0.630·2-s − 0.0840·3-s − 0.601·4-s + 1.23·5-s + 0.0530·6-s − 0.338·7-s + 1.01·8-s − 0.992·9-s − 0.779·10-s − 0.301·11-s + 0.0505·12-s + 0.213·14-s − 0.103·15-s − 0.0358·16-s + 0.103·17-s + 0.626·18-s − 1.09·19-s − 0.743·20-s + 0.0284·21-s + 0.190·22-s + 1.42·23-s − 0.0849·24-s + 0.525·25-s + 0.167·27-s + 0.203·28-s + 1.32·29-s + 0.0654·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1859 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1859 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1859\)    =    \(11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(109.684\)
Root analytic conductor: \(10.4730\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1859,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 + 11T \)
13 \( 1 \)
good2 \( 1 + 1.78T + 8T^{2} \)
3 \( 1 + 0.436T + 27T^{2} \)
5 \( 1 - 13.8T + 125T^{2} \)
7 \( 1 + 6.26T + 343T^{2} \)
17 \( 1 - 7.27T + 4.91e3T^{2} \)
19 \( 1 + 91.0T + 6.85e3T^{2} \)
23 \( 1 - 157.T + 1.21e4T^{2} \)
29 \( 1 - 206.T + 2.43e4T^{2} \)
31 \( 1 - 8.76T + 2.97e4T^{2} \)
37 \( 1 - 132.T + 5.06e4T^{2} \)
41 \( 1 + 58.6T + 6.89e4T^{2} \)
43 \( 1 - 23.3T + 7.95e4T^{2} \)
47 \( 1 + 1.21T + 1.03e5T^{2} \)
53 \( 1 + 554.T + 1.48e5T^{2} \)
59 \( 1 + 129.T + 2.05e5T^{2} \)
61 \( 1 - 242.T + 2.26e5T^{2} \)
67 \( 1 + 398.T + 3.00e5T^{2} \)
71 \( 1 - 757.T + 3.57e5T^{2} \)
73 \( 1 - 872.T + 3.89e5T^{2} \)
79 \( 1 + 773.T + 4.93e5T^{2} \)
83 \( 1 + 4.22T + 5.71e5T^{2} \)
89 \( 1 - 290.T + 7.04e5T^{2} \)
97 \( 1 + 642.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.580045139915145150610777664821, −8.044953799434818625912400933659, −6.80675387302641167091837736505, −6.12133728425004437802695339286, −5.27074120766115271127138512162, −4.58627870484885774988250806423, −3.20639613095207592781727841189, −2.28338859367083926550329549038, −1.11427039837900195448599460096, 0, 1.11427039837900195448599460096, 2.28338859367083926550329549038, 3.20639613095207592781727841189, 4.58627870484885774988250806423, 5.27074120766115271127138512162, 6.12133728425004437802695339286, 6.80675387302641167091837736505, 8.044953799434818625912400933659, 8.580045139915145150610777664821

Graph of the $Z$-function along the critical line