Properties

Label 2-1859-1.1-c3-0-162
Degree $2$
Conductor $1859$
Sign $-1$
Analytic cond. $109.684$
Root an. cond. $10.4730$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.532·2-s + 1.85·3-s − 7.71·4-s − 18.1·5-s − 0.988·6-s − 20.2·7-s + 8.37·8-s − 23.5·9-s + 9.64·10-s − 11·11-s − 14.3·12-s + 10.8·14-s − 33.6·15-s + 57.2·16-s − 66.4·17-s + 12.5·18-s + 139.·19-s + 139.·20-s − 37.6·21-s + 5.86·22-s − 30.4·23-s + 15.5·24-s + 202.·25-s − 93.8·27-s + 156.·28-s + 195.·29-s + 17.9·30-s + ⋯
L(s)  = 1  − 0.188·2-s + 0.357·3-s − 0.964·4-s − 1.61·5-s − 0.0672·6-s − 1.09·7-s + 0.370·8-s − 0.872·9-s + 0.305·10-s − 0.301·11-s − 0.344·12-s + 0.206·14-s − 0.578·15-s + 0.894·16-s − 0.948·17-s + 0.164·18-s + 1.68·19-s + 1.56·20-s − 0.391·21-s + 0.0567·22-s − 0.275·23-s + 0.132·24-s + 1.62·25-s − 0.668·27-s + 1.05·28-s + 1.25·29-s + 0.108·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1859 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1859 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1859\)    =    \(11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(109.684\)
Root analytic conductor: \(10.4730\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1859,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 + 11T \)
13 \( 1 \)
good2 \( 1 + 0.532T + 8T^{2} \)
3 \( 1 - 1.85T + 27T^{2} \)
5 \( 1 + 18.1T + 125T^{2} \)
7 \( 1 + 20.2T + 343T^{2} \)
17 \( 1 + 66.4T + 4.91e3T^{2} \)
19 \( 1 - 139.T + 6.85e3T^{2} \)
23 \( 1 + 30.4T + 1.21e4T^{2} \)
29 \( 1 - 195.T + 2.43e4T^{2} \)
31 \( 1 + 70.0T + 2.97e4T^{2} \)
37 \( 1 - 216.T + 5.06e4T^{2} \)
41 \( 1 - 450.T + 6.89e4T^{2} \)
43 \( 1 + 326.T + 7.95e4T^{2} \)
47 \( 1 - 306.T + 1.03e5T^{2} \)
53 \( 1 + 582.T + 1.48e5T^{2} \)
59 \( 1 + 351.T + 2.05e5T^{2} \)
61 \( 1 + 129.T + 2.26e5T^{2} \)
67 \( 1 - 153.T + 3.00e5T^{2} \)
71 \( 1 - 1.06e3T + 3.57e5T^{2} \)
73 \( 1 - 138.T + 3.89e5T^{2} \)
79 \( 1 - 1.12e3T + 4.93e5T^{2} \)
83 \( 1 + 377.T + 5.71e5T^{2} \)
89 \( 1 + 1.33e3T + 7.04e5T^{2} \)
97 \( 1 + 1.42e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.355487759430074941867476806324, −7.956266030733244469471351806083, −7.16350284435565007182830288521, −6.10788491227043917330158650222, −5.05249488509563873209124564966, −4.20542529815843598649384143772, −3.41700306876626067316898196691, −2.82041454344266306958781233518, −0.75831004685198670497979546132, 0, 0.75831004685198670497979546132, 2.82041454344266306958781233518, 3.41700306876626067316898196691, 4.20542529815843598649384143772, 5.05249488509563873209124564966, 6.10788491227043917330158650222, 7.16350284435565007182830288521, 7.956266030733244469471351806083, 8.355487759430074941867476806324

Graph of the $Z$-function along the critical line