L(s) = 1 | − 0.532·2-s + 1.85·3-s − 7.71·4-s − 18.1·5-s − 0.988·6-s − 20.2·7-s + 8.37·8-s − 23.5·9-s + 9.64·10-s − 11·11-s − 14.3·12-s + 10.8·14-s − 33.6·15-s + 57.2·16-s − 66.4·17-s + 12.5·18-s + 139.·19-s + 139.·20-s − 37.6·21-s + 5.86·22-s − 30.4·23-s + 15.5·24-s + 202.·25-s − 93.8·27-s + 156.·28-s + 195.·29-s + 17.9·30-s + ⋯ |
L(s) = 1 | − 0.188·2-s + 0.357·3-s − 0.964·4-s − 1.61·5-s − 0.0672·6-s − 1.09·7-s + 0.370·8-s − 0.872·9-s + 0.305·10-s − 0.301·11-s − 0.344·12-s + 0.206·14-s − 0.578·15-s + 0.894·16-s − 0.948·17-s + 0.164·18-s + 1.68·19-s + 1.56·20-s − 0.391·21-s + 0.0567·22-s − 0.275·23-s + 0.132·24-s + 1.62·25-s − 0.668·27-s + 1.05·28-s + 1.25·29-s + 0.108·30-s + ⋯ |
Λ(s)=(=(1859s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1859s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1+11T |
| 13 | 1 |
good | 2 | 1+0.532T+8T2 |
| 3 | 1−1.85T+27T2 |
| 5 | 1+18.1T+125T2 |
| 7 | 1+20.2T+343T2 |
| 17 | 1+66.4T+4.91e3T2 |
| 19 | 1−139.T+6.85e3T2 |
| 23 | 1+30.4T+1.21e4T2 |
| 29 | 1−195.T+2.43e4T2 |
| 31 | 1+70.0T+2.97e4T2 |
| 37 | 1−216.T+5.06e4T2 |
| 41 | 1−450.T+6.89e4T2 |
| 43 | 1+326.T+7.95e4T2 |
| 47 | 1−306.T+1.03e5T2 |
| 53 | 1+582.T+1.48e5T2 |
| 59 | 1+351.T+2.05e5T2 |
| 61 | 1+129.T+2.26e5T2 |
| 67 | 1−153.T+3.00e5T2 |
| 71 | 1−1.06e3T+3.57e5T2 |
| 73 | 1−138.T+3.89e5T2 |
| 79 | 1−1.12e3T+4.93e5T2 |
| 83 | 1+377.T+5.71e5T2 |
| 89 | 1+1.33e3T+7.04e5T2 |
| 97 | 1+1.42e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.355487759430074941867476806324, −7.956266030733244469471351806083, −7.16350284435565007182830288521, −6.10788491227043917330158650222, −5.05249488509563873209124564966, −4.20542529815843598649384143772, −3.41700306876626067316898196691, −2.82041454344266306958781233518, −0.75831004685198670497979546132, 0,
0.75831004685198670497979546132, 2.82041454344266306958781233518, 3.41700306876626067316898196691, 4.20542529815843598649384143772, 5.05249488509563873209124564966, 6.10788491227043917330158650222, 7.16350284435565007182830288521, 7.956266030733244469471351806083, 8.355487759430074941867476806324