Properties

Label 2-1859-1.1-c3-0-346
Degree $2$
Conductor $1859$
Sign $-1$
Analytic cond. $109.684$
Root an. cond. $10.4730$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.30·2-s + 4.54·3-s − 2.69·4-s + 4.16·5-s + 10.4·6-s + 17.3·7-s − 24.6·8-s − 6.31·9-s + 9.59·10-s − 11·11-s − 12.2·12-s + 39.9·14-s + 18.9·15-s − 35.1·16-s + 1.39·17-s − 14.5·18-s − 58.9·19-s − 11.2·20-s + 78.9·21-s − 25.3·22-s + 46.6·23-s − 112.·24-s − 107.·25-s − 151.·27-s − 46.8·28-s + 175.·29-s + 43.6·30-s + ⋯
L(s)  = 1  + 0.814·2-s + 0.875·3-s − 0.337·4-s + 0.372·5-s + 0.712·6-s + 0.937·7-s − 1.08·8-s − 0.233·9-s + 0.303·10-s − 0.301·11-s − 0.295·12-s + 0.763·14-s + 0.326·15-s − 0.548·16-s + 0.0198·17-s − 0.190·18-s − 0.711·19-s − 0.125·20-s + 0.820·21-s − 0.245·22-s + 0.422·23-s − 0.952·24-s − 0.861·25-s − 1.07·27-s − 0.316·28-s + 1.12·29-s + 0.265·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1859 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1859 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1859\)    =    \(11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(109.684\)
Root analytic conductor: \(10.4730\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1859,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 + 11T \)
13 \( 1 \)
good2 \( 1 - 2.30T + 8T^{2} \)
3 \( 1 - 4.54T + 27T^{2} \)
5 \( 1 - 4.16T + 125T^{2} \)
7 \( 1 - 17.3T + 343T^{2} \)
17 \( 1 - 1.39T + 4.91e3T^{2} \)
19 \( 1 + 58.9T + 6.85e3T^{2} \)
23 \( 1 - 46.6T + 1.21e4T^{2} \)
29 \( 1 - 175.T + 2.43e4T^{2} \)
31 \( 1 - 33.3T + 2.97e4T^{2} \)
37 \( 1 + 376.T + 5.06e4T^{2} \)
41 \( 1 - 270.T + 6.89e4T^{2} \)
43 \( 1 + 125.T + 7.95e4T^{2} \)
47 \( 1 + 562.T + 1.03e5T^{2} \)
53 \( 1 + 356.T + 1.48e5T^{2} \)
59 \( 1 + 138.T + 2.05e5T^{2} \)
61 \( 1 - 358.T + 2.26e5T^{2} \)
67 \( 1 + 291.T + 3.00e5T^{2} \)
71 \( 1 + 90.2T + 3.57e5T^{2} \)
73 \( 1 + 366.T + 3.89e5T^{2} \)
79 \( 1 - 270.T + 4.93e5T^{2} \)
83 \( 1 - 746.T + 5.71e5T^{2} \)
89 \( 1 + 1.48e3T + 7.04e5T^{2} \)
97 \( 1 + 869.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.328233533810927181728073915769, −8.083569678810670858936521014432, −6.78559992190276303349938837998, −5.85457073418438657485443515007, −5.09279537417072453553555738147, −4.39738544846530001953675589684, −3.42479103593178067151506518103, −2.63122548914633838450505543583, −1.64216054188870969321051858664, 0, 1.64216054188870969321051858664, 2.63122548914633838450505543583, 3.42479103593178067151506518103, 4.39738544846530001953675589684, 5.09279537417072453553555738147, 5.85457073418438657485443515007, 6.78559992190276303349938837998, 8.083569678810670858936521014432, 8.328233533810927181728073915769

Graph of the $Z$-function along the critical line