L(s) = 1 | + 2.30·2-s + 4.54·3-s − 2.69·4-s + 4.16·5-s + 10.4·6-s + 17.3·7-s − 24.6·8-s − 6.31·9-s + 9.59·10-s − 11·11-s − 12.2·12-s + 39.9·14-s + 18.9·15-s − 35.1·16-s + 1.39·17-s − 14.5·18-s − 58.9·19-s − 11.2·20-s + 78.9·21-s − 25.3·22-s + 46.6·23-s − 112.·24-s − 107.·25-s − 151.·27-s − 46.8·28-s + 175.·29-s + 43.6·30-s + ⋯ |
L(s) = 1 | + 0.814·2-s + 0.875·3-s − 0.337·4-s + 0.372·5-s + 0.712·6-s + 0.937·7-s − 1.08·8-s − 0.233·9-s + 0.303·10-s − 0.301·11-s − 0.295·12-s + 0.763·14-s + 0.326·15-s − 0.548·16-s + 0.0198·17-s − 0.190·18-s − 0.711·19-s − 0.125·20-s + 0.820·21-s − 0.245·22-s + 0.422·23-s − 0.952·24-s − 0.861·25-s − 1.07·27-s − 0.316·28-s + 1.12·29-s + 0.265·30-s + ⋯ |
Λ(s)=(=(1859s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1859s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1+11T |
| 13 | 1 |
good | 2 | 1−2.30T+8T2 |
| 3 | 1−4.54T+27T2 |
| 5 | 1−4.16T+125T2 |
| 7 | 1−17.3T+343T2 |
| 17 | 1−1.39T+4.91e3T2 |
| 19 | 1+58.9T+6.85e3T2 |
| 23 | 1−46.6T+1.21e4T2 |
| 29 | 1−175.T+2.43e4T2 |
| 31 | 1−33.3T+2.97e4T2 |
| 37 | 1+376.T+5.06e4T2 |
| 41 | 1−270.T+6.89e4T2 |
| 43 | 1+125.T+7.95e4T2 |
| 47 | 1+562.T+1.03e5T2 |
| 53 | 1+356.T+1.48e5T2 |
| 59 | 1+138.T+2.05e5T2 |
| 61 | 1−358.T+2.26e5T2 |
| 67 | 1+291.T+3.00e5T2 |
| 71 | 1+90.2T+3.57e5T2 |
| 73 | 1+366.T+3.89e5T2 |
| 79 | 1−270.T+4.93e5T2 |
| 83 | 1−746.T+5.71e5T2 |
| 89 | 1+1.48e3T+7.04e5T2 |
| 97 | 1+869.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.328233533810927181728073915769, −8.083569678810670858936521014432, −6.78559992190276303349938837998, −5.85457073418438657485443515007, −5.09279537417072453553555738147, −4.39738544846530001953675589684, −3.42479103593178067151506518103, −2.63122548914633838450505543583, −1.64216054188870969321051858664, 0,
1.64216054188870969321051858664, 2.63122548914633838450505543583, 3.42479103593178067151506518103, 4.39738544846530001953675589684, 5.09279537417072453553555738147, 5.85457073418438657485443515007, 6.78559992190276303349938837998, 8.083569678810670858936521014432, 8.328233533810927181728073915769