Properties

Label 4-186e2-1.1-c1e2-0-4
Degree $4$
Conductor $34596$
Sign $1$
Analytic cond. $2.20587$
Root an. cond. $1.21869$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 2·3-s + 3·4-s + 3·5-s − 4·6-s + 2·7-s + 4·8-s + 3·9-s + 6·10-s − 11-s − 6·12-s + 3·13-s + 4·14-s − 6·15-s + 5·16-s − 17-s + 6·18-s − 19-s + 9·20-s − 4·21-s − 2·22-s − 16·23-s − 8·24-s + 25-s + 6·26-s − 4·27-s + 6·28-s + ⋯
L(s)  = 1  + 1.41·2-s − 1.15·3-s + 3/2·4-s + 1.34·5-s − 1.63·6-s + 0.755·7-s + 1.41·8-s + 9-s + 1.89·10-s − 0.301·11-s − 1.73·12-s + 0.832·13-s + 1.06·14-s − 1.54·15-s + 5/4·16-s − 0.242·17-s + 1.41·18-s − 0.229·19-s + 2.01·20-s − 0.872·21-s − 0.426·22-s − 3.33·23-s − 1.63·24-s + 1/5·25-s + 1.17·26-s − 0.769·27-s + 1.13·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 34596 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 34596 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(34596\)    =    \(2^{2} \cdot 3^{2} \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(2.20587\)
Root analytic conductor: \(1.21869\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 34596,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.668125374\)
\(L(\frac12)\) \(\approx\) \(2.668125374\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{2} \)
3$C_1$ \( ( 1 + T )^{2} \)
31$C_1$ \( ( 1 + T )^{2} \)
good5$C_2^2$ \( 1 - 3 T + 8 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
7$D_{4}$ \( 1 - 2 T - 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 + T + 18 T^{2} + p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 - 3 T + 24 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 + T - 4 T^{2} + p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 + T + 34 T^{2} + p T^{3} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
29$D_{4}$ \( 1 + 6 T + 50 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
41$D_{4}$ \( 1 + 8 T + 30 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 10 T + 94 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 - 5 T + 62 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
59$D_{4}$ \( 1 - 6 T + 110 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 - 3 T + 120 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 - 13 T + 138 T^{2} - 13 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 + 7 T + 150 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
79$D_{4}$ \( 1 - 5 T + 126 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 5 T + 66 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 - 16 T + 174 T^{2} - 16 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 9 T + 108 T^{2} + 9 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.82970242883536565766697726296, −12.41632016184871497591587058850, −11.77635719893748808657083014272, −11.64292813372037331744539020433, −10.99724376699698323288834005611, −10.58074293327207340388459008405, −9.960164633792659717568248243671, −9.848792134156071187791953251953, −8.813422363596946949301763839220, −8.020998539187196701231981613739, −7.67343845024421837813346723312, −6.65478381999053354976868805730, −6.33537835797121285546506423012, −5.89527281517259554048250840687, −5.32146829320858463202368391376, −5.08763962406561887319709169070, −4.02831647294226359807140406812, −3.74481057082569996274433617289, −2.02882643892120175759435607569, −1.91959031414303079475692139098, 1.91959031414303079475692139098, 2.02882643892120175759435607569, 3.74481057082569996274433617289, 4.02831647294226359807140406812, 5.08763962406561887319709169070, 5.32146829320858463202368391376, 5.89527281517259554048250840687, 6.33537835797121285546506423012, 6.65478381999053354976868805730, 7.67343845024421837813346723312, 8.020998539187196701231981613739, 8.813422363596946949301763839220, 9.848792134156071187791953251953, 9.960164633792659717568248243671, 10.58074293327207340388459008405, 10.99724376699698323288834005611, 11.64292813372037331744539020433, 11.77635719893748808657083014272, 12.41632016184871497591587058850, 12.82970242883536565766697726296

Graph of the $Z$-function along the critical line