L(s) = 1 | + 2·2-s − 2·3-s + 3·4-s + 3·5-s − 4·6-s + 2·7-s + 4·8-s + 3·9-s + 6·10-s − 11-s − 6·12-s + 3·13-s + 4·14-s − 6·15-s + 5·16-s − 17-s + 6·18-s − 19-s + 9·20-s − 4·21-s − 2·22-s − 16·23-s − 8·24-s + 25-s + 6·26-s − 4·27-s + 6·28-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 1.15·3-s + 3/2·4-s + 1.34·5-s − 1.63·6-s + 0.755·7-s + 1.41·8-s + 9-s + 1.89·10-s − 0.301·11-s − 1.73·12-s + 0.832·13-s + 1.06·14-s − 1.54·15-s + 5/4·16-s − 0.242·17-s + 1.41·18-s − 0.229·19-s + 2.01·20-s − 0.872·21-s − 0.426·22-s − 3.33·23-s − 1.63·24-s + 1/5·25-s + 1.17·26-s − 0.769·27-s + 1.13·28-s + ⋯ |
Λ(s)=(=(34596s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(34596s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
34596
= 22⋅32⋅312
|
Sign: |
1
|
Analytic conductor: |
2.20587 |
Root analytic conductor: |
1.21869 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 34596, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.668125374 |
L(21) |
≈ |
2.668125374 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1−T)2 |
| 3 | C1 | (1+T)2 |
| 31 | C1 | (1+T)2 |
good | 5 | C22 | 1−3T+8T2−3pT3+p2T4 |
| 7 | D4 | 1−2T−2T2−2pT3+p2T4 |
| 11 | D4 | 1+T+18T2+pT3+p2T4 |
| 13 | D4 | 1−3T+24T2−3pT3+p2T4 |
| 17 | D4 | 1+T−4T2+pT3+p2T4 |
| 19 | D4 | 1+T+34T2+pT3+p2T4 |
| 23 | C2 | (1+8T+pT2)2 |
| 29 | D4 | 1+6T+50T2+6pT3+p2T4 |
| 37 | C22 | 1+6T2+p2T4 |
| 41 | D4 | 1+8T+30T2+8pT3+p2T4 |
| 43 | D4 | 1+10T+94T2+10pT3+p2T4 |
| 47 | D4 | 1−5T+62T2−5pT3+p2T4 |
| 53 | C2 | (1+2T+pT2)2 |
| 59 | D4 | 1−6T+110T2−6pT3+p2T4 |
| 61 | D4 | 1−3T+120T2−3pT3+p2T4 |
| 67 | D4 | 1−13T+138T2−13pT3+p2T4 |
| 71 | D4 | 1+7T+150T2+7pT3+p2T4 |
| 73 | C2 | (1−10T+pT2)2 |
| 79 | D4 | 1−5T+126T2−5pT3+p2T4 |
| 83 | D4 | 1−5T+66T2−5pT3+p2T4 |
| 89 | D4 | 1−16T+174T2−16pT3+p2T4 |
| 97 | D4 | 1+9T+108T2+9pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.82970242883536565766697726296, −12.41632016184871497591587058850, −11.77635719893748808657083014272, −11.64292813372037331744539020433, −10.99724376699698323288834005611, −10.58074293327207340388459008405, −9.960164633792659717568248243671, −9.848792134156071187791953251953, −8.813422363596946949301763839220, −8.020998539187196701231981613739, −7.67343845024421837813346723312, −6.65478381999053354976868805730, −6.33537835797121285546506423012, −5.89527281517259554048250840687, −5.32146829320858463202368391376, −5.08763962406561887319709169070, −4.02831647294226359807140406812, −3.74481057082569996274433617289, −2.02882643892120175759435607569, −1.91959031414303079475692139098,
1.91959031414303079475692139098, 2.02882643892120175759435607569, 3.74481057082569996274433617289, 4.02831647294226359807140406812, 5.08763962406561887319709169070, 5.32146829320858463202368391376, 5.89527281517259554048250840687, 6.33537835797121285546506423012, 6.65478381999053354976868805730, 7.67343845024421837813346723312, 8.020998539187196701231981613739, 8.813422363596946949301763839220, 9.848792134156071187791953251953, 9.960164633792659717568248243671, 10.58074293327207340388459008405, 10.99724376699698323288834005611, 11.64292813372037331744539020433, 11.77635719893748808657083014272, 12.41632016184871497591587058850, 12.82970242883536565766697726296