Properties

Label 2-186-1.1-c1-0-3
Degree $2$
Conductor $186$
Sign $1$
Analytic cond. $1.48521$
Root an. cond. $1.21869$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s + 3.56·5-s − 6-s − 3.12·7-s + 8-s + 9-s + 3.56·10-s + 1.56·11-s − 12-s + 3.56·13-s − 3.12·14-s − 3.56·15-s + 16-s − 6.68·17-s + 18-s + 1.56·19-s + 3.56·20-s + 3.12·21-s + 1.56·22-s − 8·23-s − 24-s + 7.68·25-s + 3.56·26-s − 27-s − 3.12·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 0.5·4-s + 1.59·5-s − 0.408·6-s − 1.18·7-s + 0.353·8-s + 0.333·9-s + 1.12·10-s + 0.470·11-s − 0.288·12-s + 0.987·13-s − 0.834·14-s − 0.919·15-s + 0.250·16-s − 1.62·17-s + 0.235·18-s + 0.358·19-s + 0.796·20-s + 0.681·21-s + 0.332·22-s − 1.66·23-s − 0.204·24-s + 1.53·25-s + 0.698·26-s − 0.192·27-s − 0.590·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 186 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 186 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(186\)    =    \(2 \cdot 3 \cdot 31\)
Sign: $1$
Analytic conductor: \(1.48521\)
Root analytic conductor: \(1.21869\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 186,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.675381320\)
\(L(\frac12)\) \(\approx\) \(1.675381320\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 + T \)
31 \( 1 + T \)
good5 \( 1 - 3.56T + 5T^{2} \)
7 \( 1 + 3.12T + 7T^{2} \)
11 \( 1 - 1.56T + 11T^{2} \)
13 \( 1 - 3.56T + 13T^{2} \)
17 \( 1 + 6.68T + 17T^{2} \)
19 \( 1 - 1.56T + 19T^{2} \)
23 \( 1 + 8T + 23T^{2} \)
29 \( 1 - 1.12T + 29T^{2} \)
37 \( 1 + 8.24T + 37T^{2} \)
41 \( 1 + 12.2T + 41T^{2} \)
43 \( 1 + 0.876T + 43T^{2} \)
47 \( 1 - 8.68T + 47T^{2} \)
53 \( 1 + 2T + 53T^{2} \)
59 \( 1 - 7.12T + 59T^{2} \)
61 \( 1 - 3.56T + 61T^{2} \)
67 \( 1 - 12.6T + 67T^{2} \)
71 \( 1 + 5.56T + 71T^{2} \)
73 \( 1 - 10T + 73T^{2} \)
79 \( 1 - 8.68T + 79T^{2} \)
83 \( 1 + 7.80T + 83T^{2} \)
89 \( 1 - 16.2T + 89T^{2} \)
97 \( 1 - 5.80T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.82970242883536565766697726296, −11.77635719893748808657083014272, −10.58074293327207340388459008405, −9.848792134156071187791953251953, −8.813422363596946949301763839220, −6.65478381999053354976868805730, −6.33537835797121285546506423012, −5.32146829320858463202368391376, −3.74481057082569996274433617289, −2.02882643892120175759435607569, 2.02882643892120175759435607569, 3.74481057082569996274433617289, 5.32146829320858463202368391376, 6.33537835797121285546506423012, 6.65478381999053354976868805730, 8.813422363596946949301763839220, 9.848792134156071187791953251953, 10.58074293327207340388459008405, 11.77635719893748808657083014272, 12.82970242883536565766697726296

Graph of the $Z$-function along the critical line