L(s) = 1 | + 1.41i·5-s + (0.5 + 0.866i)7-s + (−1.22 − 0.707i)11-s + (0.5 + 0.866i)13-s + (1.22 + 0.707i)23-s − 1.00·25-s + (−1.22 − 0.707i)29-s − 31-s + (−1.22 + 0.707i)35-s + (0.5 + 0.866i)43-s + 1.41i·47-s + (1.00 − 1.73i)55-s + (−1.22 + 0.707i)59-s + (−0.5 − 0.866i)61-s + (−1.22 + 0.707i)65-s + ⋯ |
L(s) = 1 | + 1.41i·5-s + (0.5 + 0.866i)7-s + (−1.22 − 0.707i)11-s + (0.5 + 0.866i)13-s + (1.22 + 0.707i)23-s − 1.00·25-s + (−1.22 − 0.707i)29-s − 31-s + (−1.22 + 0.707i)35-s + (0.5 + 0.866i)43-s + 1.41i·47-s + (1.00 − 1.73i)55-s + (−1.22 + 0.707i)59-s + (−0.5 − 0.866i)61-s + (−1.22 + 0.707i)65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.162 - 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.162 - 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.068156475\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.068156475\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (-0.5 - 0.866i)T \) |
good | 5 | \( 1 - 1.41iT - T^{2} \) |
| 7 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (1.22 + 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-1.22 - 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (1.22 + 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + T + T^{2} \) |
| 37 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 - 1.41iT - T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (1.22 - 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (-1.22 + 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + T + T^{2} \) |
| 79 | \( 1 - T + T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.507306878998669142621319383468, −8.960427535713105880481524403496, −7.88159349524089807796661252591, −7.41801423156554094797001985242, −6.36665264980924535256753070789, −5.76680808716137053579947968946, −4.88437031412233931285100472338, −3.56155695294615152853462184726, −2.82761206328073714035011010263, −1.91860754279898875712100839849,
0.799267715146077860608838832363, 1.98492045971916247638842383840, 3.41293786859977744830943890349, 4.46398627765299169809353965572, 5.10511010416445929708107984835, 5.66849136978678372536973133414, 7.15699950863964623707275142889, 7.61955685396489103432881329702, 8.502153526844189437723539905051, 9.007745355034732865791125510452