Properties

Label 2-1872-13.3-c1-0-10
Degree 22
Conductor 18721872
Sign 0.01280.999i0.0128 - 0.999i
Analytic cond. 14.947914.9479
Root an. cond. 3.866263.86626
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.64·5-s + (−1 + 1.73i)7-s + (2.64 + 4.58i)11-s + (3.5 − 0.866i)13-s + (−3.96 + 6.87i)17-s + (−3 + 5.19i)19-s + (−2.64 − 4.58i)23-s + 2.00·25-s + (−1.32 − 2.29i)29-s − 4·31-s + (−2.64 + 4.58i)35-s + (1.5 + 2.59i)37-s + (−3.96 − 6.87i)41-s + (−1 + 1.73i)43-s − 5.29·47-s + ⋯
L(s)  = 1  + 1.18·5-s + (−0.377 + 0.654i)7-s + (0.797 + 1.38i)11-s + (0.970 − 0.240i)13-s + (−0.962 + 1.66i)17-s + (−0.688 + 1.19i)19-s + (−0.551 − 0.955i)23-s + 0.400·25-s + (−0.245 − 0.425i)29-s − 0.718·31-s + (−0.447 + 0.774i)35-s + (0.246 + 0.427i)37-s + (−0.619 − 1.07i)41-s + (−0.152 + 0.264i)43-s − 0.771·47-s + ⋯

Functional equation

Λ(s)=(1872s/2ΓC(s)L(s)=((0.01280.999i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0128 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(1872s/2ΓC(s+1/2)L(s)=((0.01280.999i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0128 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 18721872    =    2432132^{4} \cdot 3^{2} \cdot 13
Sign: 0.01280.999i0.0128 - 0.999i
Analytic conductor: 14.947914.9479
Root analytic conductor: 3.866263.86626
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ1872(289,)\chi_{1872} (289, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 1872, ( :1/2), 0.01280.999i)(2,\ 1872,\ (\ :1/2),\ 0.0128 - 0.999i)

Particular Values

L(1)L(1) \approx 1.8922802691.892280269
L(12)L(\frac12) \approx 1.8922802691.892280269
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
13 1+(3.5+0.866i)T 1 + (-3.5 + 0.866i)T
good5 12.64T+5T2 1 - 2.64T + 5T^{2}
7 1+(11.73i)T+(3.56.06i)T2 1 + (1 - 1.73i)T + (-3.5 - 6.06i)T^{2}
11 1+(2.644.58i)T+(5.5+9.52i)T2 1 + (-2.64 - 4.58i)T + (-5.5 + 9.52i)T^{2}
17 1+(3.966.87i)T+(8.514.7i)T2 1 + (3.96 - 6.87i)T + (-8.5 - 14.7i)T^{2}
19 1+(35.19i)T+(9.516.4i)T2 1 + (3 - 5.19i)T + (-9.5 - 16.4i)T^{2}
23 1+(2.64+4.58i)T+(11.5+19.9i)T2 1 + (2.64 + 4.58i)T + (-11.5 + 19.9i)T^{2}
29 1+(1.32+2.29i)T+(14.5+25.1i)T2 1 + (1.32 + 2.29i)T + (-14.5 + 25.1i)T^{2}
31 1+4T+31T2 1 + 4T + 31T^{2}
37 1+(1.52.59i)T+(18.5+32.0i)T2 1 + (-1.5 - 2.59i)T + (-18.5 + 32.0i)T^{2}
41 1+(3.96+6.87i)T+(20.5+35.5i)T2 1 + (3.96 + 6.87i)T + (-20.5 + 35.5i)T^{2}
43 1+(11.73i)T+(21.537.2i)T2 1 + (1 - 1.73i)T + (-21.5 - 37.2i)T^{2}
47 1+5.29T+47T2 1 + 5.29T + 47T^{2}
53 17.93T+53T2 1 - 7.93T + 53T^{2}
59 1+(5.29+9.16i)T+(29.551.0i)T2 1 + (-5.29 + 9.16i)T + (-29.5 - 51.0i)T^{2}
61 1+(6.511.2i)T+(30.552.8i)T2 1 + (6.5 - 11.2i)T + (-30.5 - 52.8i)T^{2}
67 1+(1+1.73i)T+(33.5+58.0i)T2 1 + (1 + 1.73i)T + (-33.5 + 58.0i)T^{2}
71 1+(2.64+4.58i)T+(35.561.4i)T2 1 + (-2.64 + 4.58i)T + (-35.5 - 61.4i)T^{2}
73 1+7T+73T2 1 + 7T + 73T^{2}
79 14T+79T2 1 - 4T + 79T^{2}
83 115.8T+83T2 1 - 15.8T + 83T^{2}
89 1+(44.5+77.0i)T2 1 + (-44.5 + 77.0i)T^{2}
97 1+(11.73i)T+(48.584.0i)T2 1 + (1 - 1.73i)T + (-48.5 - 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.366681713218821500267760760835, −8.783289748835940229504284195862, −8.043692128927019105012783825477, −6.71805580433408657966446031537, −6.19916373103312667890364821080, −5.71633226273218670214068623076, −4.41615029093737791377641634983, −3.68587304071269763456484824417, −2.08537682249800111210587823652, −1.78853177239135530188562841383, 0.66498038271640138476457699571, 1.91245677924523517405062517560, 3.09154547222709204131378356784, 3.95855055913473349736238255091, 5.07473436197625952212869228780, 5.97836891105535028977190037435, 6.56938740075092842921131018307, 7.22438660333770069759719162956, 8.544039743952668585153081789831, 9.124557144184054774041998062267

Graph of the ZZ-function along the critical line