L(s) = 1 | + 2.64·5-s + (−1 + 1.73i)7-s + (2.64 + 4.58i)11-s + (3.5 − 0.866i)13-s + (−3.96 + 6.87i)17-s + (−3 + 5.19i)19-s + (−2.64 − 4.58i)23-s + 2.00·25-s + (−1.32 − 2.29i)29-s − 4·31-s + (−2.64 + 4.58i)35-s + (1.5 + 2.59i)37-s + (−3.96 − 6.87i)41-s + (−1 + 1.73i)43-s − 5.29·47-s + ⋯ |
L(s) = 1 | + 1.18·5-s + (−0.377 + 0.654i)7-s + (0.797 + 1.38i)11-s + (0.970 − 0.240i)13-s + (−0.962 + 1.66i)17-s + (−0.688 + 1.19i)19-s + (−0.551 − 0.955i)23-s + 0.400·25-s + (−0.245 − 0.425i)29-s − 0.718·31-s + (−0.447 + 0.774i)35-s + (0.246 + 0.427i)37-s + (−0.619 − 1.07i)41-s + (−0.152 + 0.264i)43-s − 0.771·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0128 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0128 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.892280269\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.892280269\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (-3.5 + 0.866i)T \) |
good | 5 | \( 1 - 2.64T + 5T^{2} \) |
| 7 | \( 1 + (1 - 1.73i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.64 - 4.58i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (3.96 - 6.87i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3 - 5.19i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (2.64 + 4.58i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.32 + 2.29i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 4T + 31T^{2} \) |
| 37 | \( 1 + (-1.5 - 2.59i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (3.96 + 6.87i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1 - 1.73i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 5.29T + 47T^{2} \) |
| 53 | \( 1 - 7.93T + 53T^{2} \) |
| 59 | \( 1 + (-5.29 + 9.16i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (6.5 - 11.2i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (1 + 1.73i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-2.64 + 4.58i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 7T + 73T^{2} \) |
| 79 | \( 1 - 4T + 79T^{2} \) |
| 83 | \( 1 - 15.8T + 83T^{2} \) |
| 89 | \( 1 + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (1 - 1.73i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.366681713218821500267760760835, −8.783289748835940229504284195862, −8.043692128927019105012783825477, −6.71805580433408657966446031537, −6.19916373103312667890364821080, −5.71633226273218670214068623076, −4.41615029093737791377641634983, −3.68587304071269763456484824417, −2.08537682249800111210587823652, −1.78853177239135530188562841383,
0.66498038271640138476457699571, 1.91245677924523517405062517560, 3.09154547222709204131378356784, 3.95855055913473349736238255091, 5.07473436197625952212869228780, 5.97836891105535028977190037435, 6.56938740075092842921131018307, 7.22438660333770069759719162956, 8.544039743952668585153081789831, 9.124557144184054774041998062267