L(s) = 1 | + 2.64·5-s + (−1 + 1.73i)7-s + (2.64 + 4.58i)11-s + (3.5 − 0.866i)13-s + (−3.96 + 6.87i)17-s + (−3 + 5.19i)19-s + (−2.64 − 4.58i)23-s + 2.00·25-s + (−1.32 − 2.29i)29-s − 4·31-s + (−2.64 + 4.58i)35-s + (1.5 + 2.59i)37-s + (−3.96 − 6.87i)41-s + (−1 + 1.73i)43-s − 5.29·47-s + ⋯ |
L(s) = 1 | + 1.18·5-s + (−0.377 + 0.654i)7-s + (0.797 + 1.38i)11-s + (0.970 − 0.240i)13-s + (−0.962 + 1.66i)17-s + (−0.688 + 1.19i)19-s + (−0.551 − 0.955i)23-s + 0.400·25-s + (−0.245 − 0.425i)29-s − 0.718·31-s + (−0.447 + 0.774i)35-s + (0.246 + 0.427i)37-s + (−0.619 − 1.07i)41-s + (−0.152 + 0.264i)43-s − 0.771·47-s + ⋯ |
Λ(s)=(=(1872s/2ΓC(s)L(s)(0.0128−0.999i)Λ(2−s)
Λ(s)=(=(1872s/2ΓC(s+1/2)L(s)(0.0128−0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
1872
= 24⋅32⋅13
|
Sign: |
0.0128−0.999i
|
Analytic conductor: |
14.9479 |
Root analytic conductor: |
3.86626 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1872(289,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1872, ( :1/2), 0.0128−0.999i)
|
Particular Values
L(1) |
≈ |
1.892280269 |
L(21) |
≈ |
1.892280269 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1+(−3.5+0.866i)T |
good | 5 | 1−2.64T+5T2 |
| 7 | 1+(1−1.73i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−2.64−4.58i)T+(−5.5+9.52i)T2 |
| 17 | 1+(3.96−6.87i)T+(−8.5−14.7i)T2 |
| 19 | 1+(3−5.19i)T+(−9.5−16.4i)T2 |
| 23 | 1+(2.64+4.58i)T+(−11.5+19.9i)T2 |
| 29 | 1+(1.32+2.29i)T+(−14.5+25.1i)T2 |
| 31 | 1+4T+31T2 |
| 37 | 1+(−1.5−2.59i)T+(−18.5+32.0i)T2 |
| 41 | 1+(3.96+6.87i)T+(−20.5+35.5i)T2 |
| 43 | 1+(1−1.73i)T+(−21.5−37.2i)T2 |
| 47 | 1+5.29T+47T2 |
| 53 | 1−7.93T+53T2 |
| 59 | 1+(−5.29+9.16i)T+(−29.5−51.0i)T2 |
| 61 | 1+(6.5−11.2i)T+(−30.5−52.8i)T2 |
| 67 | 1+(1+1.73i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−2.64+4.58i)T+(−35.5−61.4i)T2 |
| 73 | 1+7T+73T2 |
| 79 | 1−4T+79T2 |
| 83 | 1−15.8T+83T2 |
| 89 | 1+(−44.5+77.0i)T2 |
| 97 | 1+(1−1.73i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.366681713218821500267760760835, −8.783289748835940229504284195862, −8.043692128927019105012783825477, −6.71805580433408657966446031537, −6.19916373103312667890364821080, −5.71633226273218670214068623076, −4.41615029093737791377641634983, −3.68587304071269763456484824417, −2.08537682249800111210587823652, −1.78853177239135530188562841383,
0.66498038271640138476457699571, 1.91245677924523517405062517560, 3.09154547222709204131378356784, 3.95855055913473349736238255091, 5.07473436197625952212869228780, 5.97836891105535028977190037435, 6.56938740075092842921131018307, 7.22438660333770069759719162956, 8.544039743952668585153081789831, 9.124557144184054774041998062267