L(s) = 1 | + 3.56·5-s + (0.280 + 0.486i)7-s + (1 − 1.73i)11-s + (0.5 + 3.57i)13-s + (−0.780 − 1.35i)17-s + (3.56 + 6.16i)19-s + (−1 + 1.73i)23-s + 7.68·25-s + (3.34 − 5.78i)29-s − 2.56·31-s + (1 + 1.73i)35-s + (−3.78 + 6.54i)37-s + (−0.780 + 1.35i)41-s + (2.28 + 3.95i)43-s + 8.24·47-s + ⋯ |
L(s) = 1 | + 1.59·5-s + (0.106 + 0.183i)7-s + (0.301 − 0.522i)11-s + (0.138 + 0.990i)13-s + (−0.189 − 0.327i)17-s + (0.817 + 1.41i)19-s + (−0.208 + 0.361i)23-s + 1.53·25-s + (0.620 − 1.07i)29-s − 0.460·31-s + (0.169 + 0.292i)35-s + (−0.621 + 1.07i)37-s + (−0.121 + 0.211i)41-s + (0.347 + 0.602i)43-s + 1.20·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.923 - 0.384i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.923 - 0.384i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.497635249\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.497635249\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (-0.5 - 3.57i)T \) |
good | 5 | \( 1 - 3.56T + 5T^{2} \) |
| 7 | \( 1 + (-0.280 - 0.486i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1 + 1.73i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (0.780 + 1.35i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.56 - 6.16i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1 - 1.73i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.34 + 5.78i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 2.56T + 31T^{2} \) |
| 37 | \( 1 + (3.78 - 6.54i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (0.780 - 1.35i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.28 - 3.95i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 8.24T + 47T^{2} \) |
| 53 | \( 1 - 0.684T + 53T^{2} \) |
| 59 | \( 1 + (-1.43 - 2.49i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1.93 + 3.35i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.28 + 3.95i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (7 + 12.1i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 10.1T + 73T^{2} \) |
| 79 | \( 1 + 5.43T + 79T^{2} \) |
| 83 | \( 1 + 0.876T + 83T^{2} \) |
| 89 | \( 1 + (-2.43 + 4.22i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-4.28 - 7.41i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.325103184043324238972951115550, −8.720609449557943700477363563860, −7.73043287595750612361067722461, −6.68840465760489197477717599095, −6.01570562172815349605657951438, −5.48304244609786335471487191377, −4.42263564723302872281811982381, −3.27499667462837918667664030543, −2.14575147941085599467771918985, −1.34604065011123697457829307571,
1.04632549379668873469767006555, 2.17561951429215874973104856902, 3.03440136362793818258010634424, 4.35725988164092933301003533264, 5.35807984818000094637297283279, 5.80190402727421685797123992296, 6.86740871666235156099354333530, 7.38289184339981563565167438414, 8.747803213252725408541094553106, 9.087803291007023319471308564400