L(s) = 1 | + 3.56·5-s + (0.280 + 0.486i)7-s + (1 − 1.73i)11-s + (0.5 + 3.57i)13-s + (−0.780 − 1.35i)17-s + (3.56 + 6.16i)19-s + (−1 + 1.73i)23-s + 7.68·25-s + (3.34 − 5.78i)29-s − 2.56·31-s + (1 + 1.73i)35-s + (−3.78 + 6.54i)37-s + (−0.780 + 1.35i)41-s + (2.28 + 3.95i)43-s + 8.24·47-s + ⋯ |
L(s) = 1 | + 1.59·5-s + (0.106 + 0.183i)7-s + (0.301 − 0.522i)11-s + (0.138 + 0.990i)13-s + (−0.189 − 0.327i)17-s + (0.817 + 1.41i)19-s + (−0.208 + 0.361i)23-s + 1.53·25-s + (0.620 − 1.07i)29-s − 0.460·31-s + (0.169 + 0.292i)35-s + (−0.621 + 1.07i)37-s + (−0.121 + 0.211i)41-s + (0.347 + 0.602i)43-s + 1.20·47-s + ⋯ |
Λ(s)=(=(1872s/2ΓC(s)L(s)(0.923−0.384i)Λ(2−s)
Λ(s)=(=(1872s/2ΓC(s+1/2)L(s)(0.923−0.384i)Λ(1−s)
Degree: |
2 |
Conductor: |
1872
= 24⋅32⋅13
|
Sign: |
0.923−0.384i
|
Analytic conductor: |
14.9479 |
Root analytic conductor: |
3.86626 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1872(1153,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1872, ( :1/2), 0.923−0.384i)
|
Particular Values
L(1) |
≈ |
2.497635249 |
L(21) |
≈ |
2.497635249 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1+(−0.5−3.57i)T |
good | 5 | 1−3.56T+5T2 |
| 7 | 1+(−0.280−0.486i)T+(−3.5+6.06i)T2 |
| 11 | 1+(−1+1.73i)T+(−5.5−9.52i)T2 |
| 17 | 1+(0.780+1.35i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−3.56−6.16i)T+(−9.5+16.4i)T2 |
| 23 | 1+(1−1.73i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−3.34+5.78i)T+(−14.5−25.1i)T2 |
| 31 | 1+2.56T+31T2 |
| 37 | 1+(3.78−6.54i)T+(−18.5−32.0i)T2 |
| 41 | 1+(0.780−1.35i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−2.28−3.95i)T+(−21.5+37.2i)T2 |
| 47 | 1−8.24T+47T2 |
| 53 | 1−0.684T+53T2 |
| 59 | 1+(−1.43−2.49i)T+(−29.5+51.0i)T2 |
| 61 | 1+(1.93+3.35i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−2.28+3.95i)T+(−33.5−58.0i)T2 |
| 71 | 1+(7+12.1i)T+(−35.5+61.4i)T2 |
| 73 | 1+10.1T+73T2 |
| 79 | 1+5.43T+79T2 |
| 83 | 1+0.876T+83T2 |
| 89 | 1+(−2.43+4.22i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−4.28−7.41i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.325103184043324238972951115550, −8.720609449557943700477363563860, −7.73043287595750612361067722461, −6.68840465760489197477717599095, −6.01570562172815349605657951438, −5.48304244609786335471487191377, −4.42263564723302872281811982381, −3.27499667462837918667664030543, −2.14575147941085599467771918985, −1.34604065011123697457829307571,
1.04632549379668873469767006555, 2.17561951429215874973104856902, 3.03440136362793818258010634424, 4.35725988164092933301003533264, 5.35807984818000094637297283279, 5.80190402727421685797123992296, 6.86740871666235156099354333530, 7.38289184339981563565167438414, 8.747803213252725408541094553106, 9.087803291007023319471308564400