Properties

Label 2-1872-1.1-c3-0-31
Degree $2$
Conductor $1872$
Sign $1$
Analytic cond. $110.451$
Root an. cond. $10.5095$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7.63·5-s − 5.63·7-s + 34.5·11-s + 13·13-s − 2·17-s + 88.1·19-s − 64·23-s − 66.7·25-s − 23.7·29-s + 284.·31-s − 42.9·35-s + 115.·37-s − 1.41·41-s + 337.·43-s − 198.·47-s − 311.·49-s − 59.0·53-s + 263.·55-s − 188.·59-s + 336.·61-s + 99.1·65-s + 531.·67-s − 510.·71-s − 164.·73-s − 194.·77-s + 29.3·79-s − 117.·83-s + ⋯
L(s)  = 1  + 0.682·5-s − 0.303·7-s + 0.946·11-s + 0.277·13-s − 0.0285·17-s + 1.06·19-s − 0.580·23-s − 0.534·25-s − 0.152·29-s + 1.64·31-s − 0.207·35-s + 0.512·37-s − 0.00537·41-s + 1.19·43-s − 0.615·47-s − 0.907·49-s − 0.153·53-s + 0.645·55-s − 0.415·59-s + 0.707·61-s + 0.189·65-s + 0.968·67-s − 0.852·71-s − 0.263·73-s − 0.287·77-s + 0.0417·79-s − 0.155·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(110.451\)
Root analytic conductor: \(10.5095\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1872,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.775399349\)
\(L(\frac12)\) \(\approx\) \(2.775399349\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - 13T \)
good5 \( 1 - 7.63T + 125T^{2} \)
7 \( 1 + 5.63T + 343T^{2} \)
11 \( 1 - 34.5T + 1.33e3T^{2} \)
17 \( 1 + 2T + 4.91e3T^{2} \)
19 \( 1 - 88.1T + 6.85e3T^{2} \)
23 \( 1 + 64T + 1.21e4T^{2} \)
29 \( 1 + 23.7T + 2.43e4T^{2} \)
31 \( 1 - 284.T + 2.97e4T^{2} \)
37 \( 1 - 115.T + 5.06e4T^{2} \)
41 \( 1 + 1.41T + 6.89e4T^{2} \)
43 \( 1 - 337.T + 7.95e4T^{2} \)
47 \( 1 + 198.T + 1.03e5T^{2} \)
53 \( 1 + 59.0T + 1.48e5T^{2} \)
59 \( 1 + 188.T + 2.05e5T^{2} \)
61 \( 1 - 336.T + 2.26e5T^{2} \)
67 \( 1 - 531.T + 3.00e5T^{2} \)
71 \( 1 + 510.T + 3.57e5T^{2} \)
73 \( 1 + 164.T + 3.89e5T^{2} \)
79 \( 1 - 29.3T + 4.93e5T^{2} \)
83 \( 1 + 117.T + 5.71e5T^{2} \)
89 \( 1 + 508.T + 7.04e5T^{2} \)
97 \( 1 + 1.02e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.989396734980124287727476614368, −8.127395019059551059899789966059, −7.25327983329754764604097199546, −6.30083719129566073539994324028, −5.89977264098585630320527784739, −4.79809035288805765310844686513, −3.86449315363557137551774524292, −2.91500596122087408259929638650, −1.80052841167742736213425197912, −0.807208050204740756171871700784, 0.807208050204740756171871700784, 1.80052841167742736213425197912, 2.91500596122087408259929638650, 3.86449315363557137551774524292, 4.79809035288805765310844686513, 5.89977264098585630320527784739, 6.30083719129566073539994324028, 7.25327983329754764604097199546, 8.127395019059551059899789966059, 8.989396734980124287727476614368

Graph of the $Z$-function along the critical line