L(s) = 1 | + 7.63·5-s − 5.63·7-s + 34.5·11-s + 13·13-s − 2·17-s + 88.1·19-s − 64·23-s − 66.7·25-s − 23.7·29-s + 284.·31-s − 42.9·35-s + 115.·37-s − 1.41·41-s + 337.·43-s − 198.·47-s − 311.·49-s − 59.0·53-s + 263.·55-s − 188.·59-s + 336.·61-s + 99.1·65-s + 531.·67-s − 510.·71-s − 164.·73-s − 194.·77-s + 29.3·79-s − 117.·83-s + ⋯ |
L(s) = 1 | + 0.682·5-s − 0.303·7-s + 0.946·11-s + 0.277·13-s − 0.0285·17-s + 1.06·19-s − 0.580·23-s − 0.534·25-s − 0.152·29-s + 1.64·31-s − 0.207·35-s + 0.512·37-s − 0.00537·41-s + 1.19·43-s − 0.615·47-s − 0.907·49-s − 0.153·53-s + 0.645·55-s − 0.415·59-s + 0.707·61-s + 0.189·65-s + 0.968·67-s − 0.852·71-s − 0.263·73-s − 0.287·77-s + 0.0417·79-s − 0.155·83-s + ⋯ |
Λ(s)=(=(1872s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1872s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.775399349 |
L(21) |
≈ |
2.775399349 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1−13T |
good | 5 | 1−7.63T+125T2 |
| 7 | 1+5.63T+343T2 |
| 11 | 1−34.5T+1.33e3T2 |
| 17 | 1+2T+4.91e3T2 |
| 19 | 1−88.1T+6.85e3T2 |
| 23 | 1+64T+1.21e4T2 |
| 29 | 1+23.7T+2.43e4T2 |
| 31 | 1−284.T+2.97e4T2 |
| 37 | 1−115.T+5.06e4T2 |
| 41 | 1+1.41T+6.89e4T2 |
| 43 | 1−337.T+7.95e4T2 |
| 47 | 1+198.T+1.03e5T2 |
| 53 | 1+59.0T+1.48e5T2 |
| 59 | 1+188.T+2.05e5T2 |
| 61 | 1−336.T+2.26e5T2 |
| 67 | 1−531.T+3.00e5T2 |
| 71 | 1+510.T+3.57e5T2 |
| 73 | 1+164.T+3.89e5T2 |
| 79 | 1−29.3T+4.93e5T2 |
| 83 | 1+117.T+5.71e5T2 |
| 89 | 1+508.T+7.04e5T2 |
| 97 | 1+1.02e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.989396734980124287727476614368, −8.127395019059551059899789966059, −7.25327983329754764604097199546, −6.30083719129566073539994324028, −5.89977264098585630320527784739, −4.79809035288805765310844686513, −3.86449315363557137551774524292, −2.91500596122087408259929638650, −1.80052841167742736213425197912, −0.807208050204740756171871700784,
0.807208050204740756171871700784, 1.80052841167742736213425197912, 2.91500596122087408259929638650, 3.86449315363557137551774524292, 4.79809035288805765310844686513, 5.89977264098585630320527784739, 6.30083719129566073539994324028, 7.25327983329754764604097199546, 8.127395019059551059899789966059, 8.989396734980124287727476614368