L(s) = 1 | + 1.12·2-s − 3-s − 0.740·4-s − 1.12·6-s − 1.11·7-s − 3.07·8-s + 9-s + 3.67·11-s + 0.740·12-s + 4.05·13-s − 1.24·14-s − 1.97·16-s − 2.12·17-s + 1.12·18-s − 4.06·19-s + 1.11·21-s + 4.11·22-s − 6.17·23-s + 3.07·24-s + 4.54·26-s − 27-s + 0.824·28-s − 2.25·29-s + 10.0·31-s + 3.93·32-s − 3.67·33-s − 2.38·34-s + ⋯ |
L(s) = 1 | + 0.793·2-s − 0.577·3-s − 0.370·4-s − 0.458·6-s − 0.420·7-s − 1.08·8-s + 0.333·9-s + 1.10·11-s + 0.213·12-s + 1.12·13-s − 0.334·14-s − 0.492·16-s − 0.514·17-s + 0.264·18-s − 0.931·19-s + 0.243·21-s + 0.878·22-s − 1.28·23-s + 0.627·24-s + 0.891·26-s − 0.192·27-s + 0.155·28-s − 0.419·29-s + 1.80·31-s + 0.696·32-s − 0.638·33-s − 0.408·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1875 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1875 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + T \) |
| 5 | \( 1 \) |
good | 2 | \( 1 - 1.12T + 2T^{2} \) |
| 7 | \( 1 + 1.11T + 7T^{2} \) |
| 11 | \( 1 - 3.67T + 11T^{2} \) |
| 13 | \( 1 - 4.05T + 13T^{2} \) |
| 17 | \( 1 + 2.12T + 17T^{2} \) |
| 19 | \( 1 + 4.06T + 19T^{2} \) |
| 23 | \( 1 + 6.17T + 23T^{2} \) |
| 29 | \( 1 + 2.25T + 29T^{2} \) |
| 31 | \( 1 - 10.0T + 31T^{2} \) |
| 37 | \( 1 + 7.37T + 37T^{2} \) |
| 41 | \( 1 + 7.47T + 41T^{2} \) |
| 43 | \( 1 + 9.24T + 43T^{2} \) |
| 47 | \( 1 - 3.12T + 47T^{2} \) |
| 53 | \( 1 - 3.50T + 53T^{2} \) |
| 59 | \( 1 + 6.59T + 59T^{2} \) |
| 61 | \( 1 + 9.10T + 61T^{2} \) |
| 67 | \( 1 + 2.62T + 67T^{2} \) |
| 71 | \( 1 - 0.660T + 71T^{2} \) |
| 73 | \( 1 + 7.47T + 73T^{2} \) |
| 79 | \( 1 - 8.53T + 79T^{2} \) |
| 83 | \( 1 + 12.2T + 83T^{2} \) |
| 89 | \( 1 + 15.2T + 89T^{2} \) |
| 97 | \( 1 + 13.4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.753735690020116685091553768623, −8.285098339094794154450601857094, −6.72652405724055332287572756453, −6.36568892921692659120990516883, −5.67618882811943976474042210756, −4.57254999025850795464794371669, −4.01949662092914436300142946813, −3.19448320551249347297506611555, −1.61262689078604032373439999062, 0,
1.61262689078604032373439999062, 3.19448320551249347297506611555, 4.01949662092914436300142946813, 4.57254999025850795464794371669, 5.67618882811943976474042210756, 6.36568892921692659120990516883, 6.72652405724055332287572756453, 8.285098339094794154450601857094, 8.753735690020116685091553768623