L(s) = 1 | + 1.12·2-s − 3-s − 0.740·4-s − 1.12·6-s − 1.11·7-s − 3.07·8-s + 9-s + 3.67·11-s + 0.740·12-s + 4.05·13-s − 1.24·14-s − 1.97·16-s − 2.12·17-s + 1.12·18-s − 4.06·19-s + 1.11·21-s + 4.11·22-s − 6.17·23-s + 3.07·24-s + 4.54·26-s − 27-s + 0.824·28-s − 2.25·29-s + 10.0·31-s + 3.93·32-s − 3.67·33-s − 2.38·34-s + ⋯ |
L(s) = 1 | + 0.793·2-s − 0.577·3-s − 0.370·4-s − 0.458·6-s − 0.420·7-s − 1.08·8-s + 0.333·9-s + 1.10·11-s + 0.213·12-s + 1.12·13-s − 0.334·14-s − 0.492·16-s − 0.514·17-s + 0.264·18-s − 0.931·19-s + 0.243·21-s + 0.878·22-s − 1.28·23-s + 0.627·24-s + 0.891·26-s − 0.192·27-s + 0.155·28-s − 0.419·29-s + 1.80·31-s + 0.696·32-s − 0.638·33-s − 0.408·34-s + ⋯ |
Λ(s)=(=(1875s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(1875s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+T |
| 5 | 1 |
good | 2 | 1−1.12T+2T2 |
| 7 | 1+1.11T+7T2 |
| 11 | 1−3.67T+11T2 |
| 13 | 1−4.05T+13T2 |
| 17 | 1+2.12T+17T2 |
| 19 | 1+4.06T+19T2 |
| 23 | 1+6.17T+23T2 |
| 29 | 1+2.25T+29T2 |
| 31 | 1−10.0T+31T2 |
| 37 | 1+7.37T+37T2 |
| 41 | 1+7.47T+41T2 |
| 43 | 1+9.24T+43T2 |
| 47 | 1−3.12T+47T2 |
| 53 | 1−3.50T+53T2 |
| 59 | 1+6.59T+59T2 |
| 61 | 1+9.10T+61T2 |
| 67 | 1+2.62T+67T2 |
| 71 | 1−0.660T+71T2 |
| 73 | 1+7.47T+73T2 |
| 79 | 1−8.53T+79T2 |
| 83 | 1+12.2T+83T2 |
| 89 | 1+15.2T+89T2 |
| 97 | 1+13.4T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.753735690020116685091553768623, −8.285098339094794154450601857094, −6.72652405724055332287572756453, −6.36568892921692659120990516883, −5.67618882811943976474042210756, −4.57254999025850795464794371669, −4.01949662092914436300142946813, −3.19448320551249347297506611555, −1.61262689078604032373439999062, 0,
1.61262689078604032373439999062, 3.19448320551249347297506611555, 4.01949662092914436300142946813, 4.57254999025850795464794371669, 5.67618882811943976474042210756, 6.36568892921692659120990516883, 6.72652405724055332287572756453, 8.285098339094794154450601857094, 8.753735690020116685091553768623