Properties

Label 2-1875-1.1-c1-0-63
Degree $2$
Conductor $1875$
Sign $-1$
Analytic cond. $14.9719$
Root an. cond. $3.86936$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.12·2-s − 3-s − 0.740·4-s − 1.12·6-s − 1.11·7-s − 3.07·8-s + 9-s + 3.67·11-s + 0.740·12-s + 4.05·13-s − 1.24·14-s − 1.97·16-s − 2.12·17-s + 1.12·18-s − 4.06·19-s + 1.11·21-s + 4.11·22-s − 6.17·23-s + 3.07·24-s + 4.54·26-s − 27-s + 0.824·28-s − 2.25·29-s + 10.0·31-s + 3.93·32-s − 3.67·33-s − 2.38·34-s + ⋯
L(s)  = 1  + 0.793·2-s − 0.577·3-s − 0.370·4-s − 0.458·6-s − 0.420·7-s − 1.08·8-s + 0.333·9-s + 1.10·11-s + 0.213·12-s + 1.12·13-s − 0.334·14-s − 0.492·16-s − 0.514·17-s + 0.264·18-s − 0.931·19-s + 0.243·21-s + 0.878·22-s − 1.28·23-s + 0.627·24-s + 0.891·26-s − 0.192·27-s + 0.155·28-s − 0.419·29-s + 1.80·31-s + 0.696·32-s − 0.638·33-s − 0.408·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1875 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1875 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1875\)    =    \(3 \cdot 5^{4}\)
Sign: $-1$
Analytic conductor: \(14.9719\)
Root analytic conductor: \(3.86936\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1875,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 \)
good2 \( 1 - 1.12T + 2T^{2} \)
7 \( 1 + 1.11T + 7T^{2} \)
11 \( 1 - 3.67T + 11T^{2} \)
13 \( 1 - 4.05T + 13T^{2} \)
17 \( 1 + 2.12T + 17T^{2} \)
19 \( 1 + 4.06T + 19T^{2} \)
23 \( 1 + 6.17T + 23T^{2} \)
29 \( 1 + 2.25T + 29T^{2} \)
31 \( 1 - 10.0T + 31T^{2} \)
37 \( 1 + 7.37T + 37T^{2} \)
41 \( 1 + 7.47T + 41T^{2} \)
43 \( 1 + 9.24T + 43T^{2} \)
47 \( 1 - 3.12T + 47T^{2} \)
53 \( 1 - 3.50T + 53T^{2} \)
59 \( 1 + 6.59T + 59T^{2} \)
61 \( 1 + 9.10T + 61T^{2} \)
67 \( 1 + 2.62T + 67T^{2} \)
71 \( 1 - 0.660T + 71T^{2} \)
73 \( 1 + 7.47T + 73T^{2} \)
79 \( 1 - 8.53T + 79T^{2} \)
83 \( 1 + 12.2T + 83T^{2} \)
89 \( 1 + 15.2T + 89T^{2} \)
97 \( 1 + 13.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.753735690020116685091553768623, −8.285098339094794154450601857094, −6.72652405724055332287572756453, −6.36568892921692659120990516883, −5.67618882811943976474042210756, −4.57254999025850795464794371669, −4.01949662092914436300142946813, −3.19448320551249347297506611555, −1.61262689078604032373439999062, 0, 1.61262689078604032373439999062, 3.19448320551249347297506611555, 4.01949662092914436300142946813, 4.57254999025850795464794371669, 5.67618882811943976474042210756, 6.36568892921692659120990516883, 6.72652405724055332287572756453, 8.285098339094794154450601857094, 8.753735690020116685091553768623

Graph of the $Z$-function along the critical line