L(s) = 1 | − 2.93·2-s + 3·3-s + 0.630·4-s − 8.81·6-s + 18.9·7-s + 21.6·8-s + 9·9-s − 6.06·11-s + 1.89·12-s + 78.2·13-s − 55.5·14-s − 68.6·16-s + 38.4·17-s − 26.4·18-s − 92.9·19-s + 56.7·21-s + 17.8·22-s − 81.0·23-s + 64.9·24-s − 229.·26-s + 27·27-s + 11.9·28-s − 11.1·29-s − 223.·31-s + 28.4·32-s − 18.2·33-s − 112.·34-s + ⋯ |
L(s) = 1 | − 1.03·2-s + 0.577·3-s + 0.0788·4-s − 0.599·6-s + 1.02·7-s + 0.956·8-s + 0.333·9-s − 0.166·11-s + 0.0455·12-s + 1.66·13-s − 1.06·14-s − 1.07·16-s + 0.547·17-s − 0.346·18-s − 1.12·19-s + 0.589·21-s + 0.172·22-s − 0.734·23-s + 0.552·24-s − 1.73·26-s + 0.192·27-s + 0.0805·28-s − 0.0714·29-s − 1.29·31-s + 0.157·32-s − 0.0960·33-s − 0.569·34-s + ⋯ |
Λ(s)=(=(1875s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1875s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−3T |
| 5 | 1 |
good | 2 | 1+2.93T+8T2 |
| 7 | 1−18.9T+343T2 |
| 11 | 1+6.06T+1.33e3T2 |
| 13 | 1−78.2T+2.19e3T2 |
| 17 | 1−38.4T+4.91e3T2 |
| 19 | 1+92.9T+6.85e3T2 |
| 23 | 1+81.0T+1.21e4T2 |
| 29 | 1+11.1T+2.43e4T2 |
| 31 | 1+223.T+2.97e4T2 |
| 37 | 1+107.T+5.06e4T2 |
| 41 | 1+350.T+6.89e4T2 |
| 43 | 1+356.T+7.95e4T2 |
| 47 | 1+291.T+1.03e5T2 |
| 53 | 1−684.T+1.48e5T2 |
| 59 | 1+223.T+2.05e5T2 |
| 61 | 1+697.T+2.26e5T2 |
| 67 | 1+909.T+3.00e5T2 |
| 71 | 1−201.T+3.57e5T2 |
| 73 | 1+291.T+3.89e5T2 |
| 79 | 1−709.T+4.93e5T2 |
| 83 | 1+1.10e3T+5.71e5T2 |
| 89 | 1−3.77T+7.04e5T2 |
| 97 | 1−18.4T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.552524288402296319920664915730, −8.036344299624704961188254129486, −7.28512774116924520580698225083, −6.24817942923156069020841561334, −5.17173263570908966620922184695, −4.24233438986693811896093897335, −3.43790659197265624820137947886, −1.86023140571303293097269545125, −1.42202897673161948304178206609, 0,
1.42202897673161948304178206609, 1.86023140571303293097269545125, 3.43790659197265624820137947886, 4.24233438986693811896093897335, 5.17173263570908966620922184695, 6.24817942923156069020841561334, 7.28512774116924520580698225083, 8.036344299624704961188254129486, 8.552524288402296319920664915730