L(s) = 1 | − 1.41·2-s + 5-s − 3.41·7-s + 2.82·8-s − 1.41·10-s + 11-s + 2.24·13-s + 4.82·14-s − 4.00·16-s − 3.41·17-s − 19-s − 1.41·22-s + 3·23-s − 4·25-s − 3.17·26-s + 6.24·29-s − 6.41·31-s + 4.82·34-s − 3.41·35-s + 10.0·37-s + 1.41·38-s + 2.82·40-s + 1.65·41-s + 0.343·43-s + ⋯ |
L(s) = 1 | − 1.00·2-s + 0.447·5-s − 1.29·7-s + 0.999·8-s − 0.447·10-s + 0.301·11-s + 0.621·13-s + 1.29·14-s − 1.00·16-s − 0.828·17-s − 0.229·19-s − 0.301·22-s + 0.625·23-s − 0.800·25-s − 0.621·26-s + 1.15·29-s − 1.15·31-s + 0.828·34-s − 0.577·35-s + 1.65·37-s + 0.229·38-s + 0.447·40-s + 0.258·41-s + 0.0523·43-s + ⋯ |
Λ(s)=(=(1881s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(1881s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1−T |
| 19 | 1+T |
good | 2 | 1+1.41T+2T2 |
| 5 | 1−T+5T2 |
| 7 | 1+3.41T+7T2 |
| 13 | 1−2.24T+13T2 |
| 17 | 1+3.41T+17T2 |
| 23 | 1−3T+23T2 |
| 29 | 1−6.24T+29T2 |
| 31 | 1+6.41T+31T2 |
| 37 | 1−10.0T+37T2 |
| 41 | 1−1.65T+41T2 |
| 43 | 1−0.343T+43T2 |
| 47 | 1+8.82T+47T2 |
| 53 | 1−4.48T+53T2 |
| 59 | 1−1.58T+59T2 |
| 61 | 1+11.0T+61T2 |
| 67 | 1+10.4T+67T2 |
| 71 | 1−12.4T+71T2 |
| 73 | 1+4.48T+73T2 |
| 79 | 1+14.5T+79T2 |
| 83 | 1+3.41T+83T2 |
| 89 | 1+4.89T+89T2 |
| 97 | 1−2.41T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.029616056575936623640895012181, −8.288545594411779593161493154789, −7.32557306461599310872818866419, −6.53131322980631352966087170390, −5.91388422041459863675062062540, −4.65982749344289371084893169663, −3.77064372604746606096012529394, −2.61645048657172399571406500208, −1.34977452635185729534176938195, 0,
1.34977452635185729534176938195, 2.61645048657172399571406500208, 3.77064372604746606096012529394, 4.65982749344289371084893169663, 5.91388422041459863675062062540, 6.53131322980631352966087170390, 7.32557306461599310872818866419, 8.288545594411779593161493154789, 9.029616056575936623640895012181