Properties

Label 2-1881-1.1-c1-0-39
Degree $2$
Conductor $1881$
Sign $-1$
Analytic cond. $15.0198$
Root an. cond. $3.87554$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.41·2-s + 5-s − 3.41·7-s + 2.82·8-s − 1.41·10-s + 11-s + 2.24·13-s + 4.82·14-s − 4.00·16-s − 3.41·17-s − 19-s − 1.41·22-s + 3·23-s − 4·25-s − 3.17·26-s + 6.24·29-s − 6.41·31-s + 4.82·34-s − 3.41·35-s + 10.0·37-s + 1.41·38-s + 2.82·40-s + 1.65·41-s + 0.343·43-s + ⋯
L(s)  = 1  − 1.00·2-s + 0.447·5-s − 1.29·7-s + 0.999·8-s − 0.447·10-s + 0.301·11-s + 0.621·13-s + 1.29·14-s − 1.00·16-s − 0.828·17-s − 0.229·19-s − 0.301·22-s + 0.625·23-s − 0.800·25-s − 0.621·26-s + 1.15·29-s − 1.15·31-s + 0.828·34-s − 0.577·35-s + 1.65·37-s + 0.229·38-s + 0.447·40-s + 0.258·41-s + 0.0523·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1881 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1881 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1881\)    =    \(3^{2} \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(15.0198\)
Root analytic conductor: \(3.87554\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1881,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
11 \( 1 - T \)
19 \( 1 + T \)
good2 \( 1 + 1.41T + 2T^{2} \)
5 \( 1 - T + 5T^{2} \)
7 \( 1 + 3.41T + 7T^{2} \)
13 \( 1 - 2.24T + 13T^{2} \)
17 \( 1 + 3.41T + 17T^{2} \)
23 \( 1 - 3T + 23T^{2} \)
29 \( 1 - 6.24T + 29T^{2} \)
31 \( 1 + 6.41T + 31T^{2} \)
37 \( 1 - 10.0T + 37T^{2} \)
41 \( 1 - 1.65T + 41T^{2} \)
43 \( 1 - 0.343T + 43T^{2} \)
47 \( 1 + 8.82T + 47T^{2} \)
53 \( 1 - 4.48T + 53T^{2} \)
59 \( 1 - 1.58T + 59T^{2} \)
61 \( 1 + 11.0T + 61T^{2} \)
67 \( 1 + 10.4T + 67T^{2} \)
71 \( 1 - 12.4T + 71T^{2} \)
73 \( 1 + 4.48T + 73T^{2} \)
79 \( 1 + 14.5T + 79T^{2} \)
83 \( 1 + 3.41T + 83T^{2} \)
89 \( 1 + 4.89T + 89T^{2} \)
97 \( 1 - 2.41T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.029616056575936623640895012181, −8.288545594411779593161493154789, −7.32557306461599310872818866419, −6.53131322980631352966087170390, −5.91388422041459863675062062540, −4.65982749344289371084893169663, −3.77064372604746606096012529394, −2.61645048657172399571406500208, −1.34977452635185729534176938195, 0, 1.34977452635185729534176938195, 2.61645048657172399571406500208, 3.77064372604746606096012529394, 4.65982749344289371084893169663, 5.91388422041459863675062062540, 6.53131322980631352966087170390, 7.32557306461599310872818866419, 8.288545594411779593161493154789, 9.029616056575936623640895012181

Graph of the $Z$-function along the critical line