L(s) = 1 | + 1.19·2-s − 0.576·4-s − 1.08·5-s − 1.30·7-s − 3.07·8-s − 1.29·10-s + 11-s + 2.53·13-s − 1.56·14-s − 2.51·16-s + 5.43·17-s + 19-s + 0.623·20-s + 1.19·22-s − 3.87·23-s − 3.82·25-s + 3.03·26-s + 0.754·28-s + 2.41·29-s + 3.03·31-s + 3.14·32-s + 6.48·34-s + 1.41·35-s + 6.85·37-s + 1.19·38-s + 3.32·40-s + 6.11·41-s + ⋯ |
L(s) = 1 | + 0.843·2-s − 0.288·4-s − 0.484·5-s − 0.494·7-s − 1.08·8-s − 0.408·10-s + 0.301·11-s + 0.704·13-s − 0.417·14-s − 0.628·16-s + 1.31·17-s + 0.229·19-s + 0.139·20-s + 0.254·22-s − 0.807·23-s − 0.765·25-s + 0.594·26-s + 0.142·28-s + 0.448·29-s + 0.545·31-s + 0.556·32-s + 1.11·34-s + 0.239·35-s + 1.12·37-s + 0.193·38-s + 0.526·40-s + 0.954·41-s + ⋯ |
Λ(s)=(=(1881s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1881s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.918778482 |
L(21) |
≈ |
1.918778482 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1−T |
| 19 | 1−T |
good | 2 | 1−1.19T+2T2 |
| 5 | 1+1.08T+5T2 |
| 7 | 1+1.30T+7T2 |
| 13 | 1−2.53T+13T2 |
| 17 | 1−5.43T+17T2 |
| 23 | 1+3.87T+23T2 |
| 29 | 1−2.41T+29T2 |
| 31 | 1−3.03T+31T2 |
| 37 | 1−6.85T+37T2 |
| 41 | 1−6.11T+41T2 |
| 43 | 1+2.95T+43T2 |
| 47 | 1−12.0T+47T2 |
| 53 | 1−0.992T+53T2 |
| 59 | 1−14.2T+59T2 |
| 61 | 1+5.82T+61T2 |
| 67 | 1−8.79T+67T2 |
| 71 | 1−2.44T+71T2 |
| 73 | 1−5.84T+73T2 |
| 79 | 1−17.0T+79T2 |
| 83 | 1−7.01T+83T2 |
| 89 | 1−9.13T+89T2 |
| 97 | 1+14.7T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.367873363522709536639391842119, −8.306008344928859887793128379878, −7.77425248603725662767184238162, −6.56274010481225011859369230947, −5.93020880892929800496132444305, −5.17723017347159556447726811935, −4.01553981921566074711944945812, −3.69749194964756242402871313388, −2.62949448611511245027306210203, −0.837710298294896467161867034901,
0.837710298294896467161867034901, 2.62949448611511245027306210203, 3.69749194964756242402871313388, 4.01553981921566074711944945812, 5.17723017347159556447726811935, 5.93020880892929800496132444305, 6.56274010481225011859369230947, 7.77425248603725662767184238162, 8.306008344928859887793128379878, 9.367873363522709536639391842119