L(s) = 1 | + 1.15·2-s − 0.654·4-s + 1.65·5-s + 0.0488i·7-s − 3.07·8-s + 1.91·10-s + (−1.85 − 2.74i)11-s + 3.48·13-s + 0.0566i·14-s − 2.26·16-s + 4.74i·17-s + (3.79 − 2.13i)19-s − 1.08·20-s + (−2.15 − 3.18i)22-s + 9.20·23-s + ⋯ |
L(s) = 1 | + 0.820·2-s − 0.327·4-s + 0.740·5-s + 0.0184i·7-s − 1.08·8-s + 0.606·10-s + (−0.559 − 0.828i)11-s + 0.966·13-s + 0.0151i·14-s − 0.565·16-s + 1.15i·17-s + (0.871 − 0.489i)19-s − 0.242·20-s + (−0.458 − 0.679i)22-s + 1.91·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1881 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.893 + 0.448i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1881 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.893 + 0.448i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.563027313\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.563027313\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 + (1.85 + 2.74i)T \) |
| 19 | \( 1 + (-3.79 + 2.13i)T \) |
good | 2 | \( 1 - 1.15T + 2T^{2} \) |
| 5 | \( 1 - 1.65T + 5T^{2} \) |
| 7 | \( 1 - 0.0488iT - 7T^{2} \) |
| 13 | \( 1 - 3.48T + 13T^{2} \) |
| 17 | \( 1 - 4.74iT - 17T^{2} \) |
| 23 | \( 1 - 9.20T + 23T^{2} \) |
| 29 | \( 1 + 1.20T + 29T^{2} \) |
| 31 | \( 1 + 10.0iT - 31T^{2} \) |
| 37 | \( 1 + 4.13iT - 37T^{2} \) |
| 41 | \( 1 - 8.22T + 41T^{2} \) |
| 43 | \( 1 - 2.11iT - 43T^{2} \) |
| 47 | \( 1 - 1.20T + 47T^{2} \) |
| 53 | \( 1 - 0.192iT - 53T^{2} \) |
| 59 | \( 1 - 0.879iT - 59T^{2} \) |
| 61 | \( 1 + 10.7iT - 61T^{2} \) |
| 67 | \( 1 + 5.05iT - 67T^{2} \) |
| 71 | \( 1 - 0.916iT - 71T^{2} \) |
| 73 | \( 1 - 5.88iT - 73T^{2} \) |
| 79 | \( 1 - 1.29T + 79T^{2} \) |
| 83 | \( 1 - 5.12iT - 83T^{2} \) |
| 89 | \( 1 - 13.1iT - 89T^{2} \) |
| 97 | \( 1 + 9.01iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.186903664641348295929806400177, −8.507431732969086424363816636014, −7.61439338056828284810006078422, −6.38553834370371397286084293210, −5.77801839043902936051159373787, −5.29965625536582735685026580573, −4.17347593530681433461762321034, −3.39635037526339095134303736132, −2.44900352085186138322639539987, −0.880992957738986293661529412816,
1.16711426054461409055723946331, 2.64430738188761869250258511138, 3.39443758811537234228988102202, 4.53761112319491436324291856602, 5.23292481910070671989979385041, 5.77152636507264423280931393879, 6.80641120326945709632520733992, 7.53726220779755925712982135661, 8.758656130370347734630803040661, 9.220937538730009615748864219532