L(s) = 1 | + (−2.38 + 4.12i)2-s + (−7.33 − 12.7i)4-s + (−9.35 + 16.1i)5-s + (14.2 − 11.8i)7-s + 31.8·8-s + (−44.5 − 77.1i)10-s + (−29.7 − 51.4i)11-s − 12.2·13-s + (15.1 + 86.8i)14-s + (−17.0 + 29.4i)16-s + (−5.76 − 9.97i)17-s + (−24.9 + 43.1i)19-s + 274.·20-s + 283.·22-s + (62.8 − 108. i)23-s + ⋯ |
L(s) = 1 | + (−0.841 + 1.45i)2-s + (−0.917 − 1.58i)4-s + (−0.836 + 1.44i)5-s + (0.767 − 0.641i)7-s + 1.40·8-s + (−1.40 − 2.43i)10-s + (−0.814 − 1.41i)11-s − 0.260·13-s + (0.289 + 1.65i)14-s + (−0.265 + 0.460i)16-s + (−0.0821 − 0.142i)17-s + (−0.300 + 0.520i)19-s + 3.06·20-s + 2.74·22-s + (0.570 − 0.987i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.972 - 0.234i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.972 - 0.234i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.535755 + 0.0635795i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.535755 + 0.0635795i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-14.2 + 11.8i)T \) |
good | 2 | \( 1 + (2.38 - 4.12i)T + (-4 - 6.92i)T^{2} \) |
| 5 | \( 1 + (9.35 - 16.1i)T + (-62.5 - 108. i)T^{2} \) |
| 11 | \( 1 + (29.7 + 51.4i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + 12.2T + 2.19e3T^{2} \) |
| 17 | \( 1 + (5.76 + 9.97i)T + (-2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (24.9 - 43.1i)T + (-3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-62.8 + 108. i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 - 228.T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-94.7 - 164. i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (16.5 - 28.7i)T + (-2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 + 524.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 234.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-136. + 237. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + (127. + 221. i)T + (-7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (84.4 + 146. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-97.5 + 168. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (257. + 446. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 - 319.T + 3.57e5T^{2} \) |
| 73 | \( 1 + (317. + 550. i)T + (-1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-426. + 737. i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 + 264.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (-457. + 791. i)T + (-3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 + 455.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.85764169746453579793117541403, −10.66008509520163966763561025947, −10.37410328598890444273678540529, −8.507711338523717572048444223253, −8.044001704165547305186488762652, −7.07168240971046728719434960148, −6.34913660324455426958195865379, −4.90141405043495754226592101141, −3.16220010009531246388085761896, −0.36653202769270927681933868269,
1.19507446400328842937925994278, 2.47493151837956601806302794081, 4.29746553377812740709549112072, 5.07776213512682416163572887746, 7.60131774498690396179805214445, 8.374428640019347465456452249464, 9.132543974382755802662318424878, 10.07074679045479881539102014966, 11.24693320670175339103355874324, 12.05241024576072855203139251832