L(s) = 1 | + (−2.38 + 4.12i)2-s + (−7.33 − 12.7i)4-s + (−9.35 + 16.1i)5-s + (14.2 − 11.8i)7-s + 31.8·8-s + (−44.5 − 77.1i)10-s + (−29.7 − 51.4i)11-s − 12.2·13-s + (15.1 + 86.8i)14-s + (−17.0 + 29.4i)16-s + (−5.76 − 9.97i)17-s + (−24.9 + 43.1i)19-s + 274.·20-s + 283.·22-s + (62.8 − 108. i)23-s + ⋯ |
L(s) = 1 | + (−0.841 + 1.45i)2-s + (−0.917 − 1.58i)4-s + (−0.836 + 1.44i)5-s + (0.767 − 0.641i)7-s + 1.40·8-s + (−1.40 − 2.43i)10-s + (−0.814 − 1.41i)11-s − 0.260·13-s + (0.289 + 1.65i)14-s + (−0.265 + 0.460i)16-s + (−0.0821 − 0.142i)17-s + (−0.300 + 0.520i)19-s + 3.06·20-s + 2.74·22-s + (0.570 − 0.987i)23-s + ⋯ |
Λ(s)=(=(189s/2ΓC(s)L(s)(0.972−0.234i)Λ(4−s)
Λ(s)=(=(189s/2ΓC(s+3/2)L(s)(0.972−0.234i)Λ(1−s)
Degree: |
2 |
Conductor: |
189
= 33⋅7
|
Sign: |
0.972−0.234i
|
Analytic conductor: |
11.1513 |
Root analytic conductor: |
3.33936 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ189(163,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 189, ( :3/2), 0.972−0.234i)
|
Particular Values
L(2) |
≈ |
0.535755+0.0635795i |
L(21) |
≈ |
0.535755+0.0635795i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(−14.2+11.8i)T |
good | 2 | 1+(2.38−4.12i)T+(−4−6.92i)T2 |
| 5 | 1+(9.35−16.1i)T+(−62.5−108.i)T2 |
| 11 | 1+(29.7+51.4i)T+(−665.5+1.15e3i)T2 |
| 13 | 1+12.2T+2.19e3T2 |
| 17 | 1+(5.76+9.97i)T+(−2.45e3+4.25e3i)T2 |
| 19 | 1+(24.9−43.1i)T+(−3.42e3−5.94e3i)T2 |
| 23 | 1+(−62.8+108.i)T+(−6.08e3−1.05e4i)T2 |
| 29 | 1−228.T+2.43e4T2 |
| 31 | 1+(−94.7−164.i)T+(−1.48e4+2.57e4i)T2 |
| 37 | 1+(16.5−28.7i)T+(−2.53e4−4.38e4i)T2 |
| 41 | 1+524.T+6.89e4T2 |
| 43 | 1−234.T+7.95e4T2 |
| 47 | 1+(−136.+237.i)T+(−5.19e4−8.99e4i)T2 |
| 53 | 1+(127.+221.i)T+(−7.44e4+1.28e5i)T2 |
| 59 | 1+(84.4+146.i)T+(−1.02e5+1.77e5i)T2 |
| 61 | 1+(−97.5+168.i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(257.+446.i)T+(−1.50e5+2.60e5i)T2 |
| 71 | 1−319.T+3.57e5T2 |
| 73 | 1+(317.+550.i)T+(−1.94e5+3.36e5i)T2 |
| 79 | 1+(−426.+737.i)T+(−2.46e5−4.26e5i)T2 |
| 83 | 1+264.T+5.71e5T2 |
| 89 | 1+(−457.+791.i)T+(−3.52e5−6.10e5i)T2 |
| 97 | 1+455.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.85764169746453579793117541403, −10.66008509520163966763561025947, −10.37410328598890444273678540529, −8.507711338523717572048444223253, −8.044001704165547305186488762652, −7.07168240971046728719434960148, −6.34913660324455426958195865379, −4.90141405043495754226592101141, −3.16220010009531246388085761896, −0.36653202769270927681933868269,
1.19507446400328842937925994278, 2.47493151837956601806302794081, 4.29746553377812740709549112072, 5.07776213512682416163572887746, 7.60131774498690396179805214445, 8.374428640019347465456452249464, 9.132543974382755802662318424878, 10.07074679045479881539102014966, 11.24693320670175339103355874324, 12.05241024576072855203139251832