L(s) = 1 | + 3.74i·3-s − 9.79·7-s − 5·9-s + 4·11-s + 11.2i·13-s − 19.5·17-s + (5 + 18.3i)19-s − 36.6i·21-s − 9.79·23-s + 14.9i·27-s + 36.6i·29-s − 36.6i·31-s + 14.9i·33-s − 33.6i·37-s − 42·39-s + ⋯ |
L(s) = 1 | + 1.24i·3-s − 1.39·7-s − 0.555·9-s + 0.363·11-s + 0.863i·13-s − 1.15·17-s + (0.263 + 0.964i)19-s − 1.74i·21-s − 0.425·23-s + 0.554i·27-s + 1.26i·29-s − 1.18i·31-s + 0.453i·33-s − 0.910i·37-s − 1.07·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.263 + 0.964i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1900 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.263 + 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.08681115252\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.08681115252\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 19 | \( 1 + (-5 - 18.3i)T \) |
good | 3 | \( 1 - 3.74iT - 9T^{2} \) |
| 7 | \( 1 + 9.79T + 49T^{2} \) |
| 11 | \( 1 - 4T + 121T^{2} \) |
| 13 | \( 1 - 11.2iT - 169T^{2} \) |
| 17 | \( 1 + 19.5T + 289T^{2} \) |
| 23 | \( 1 + 9.79T + 529T^{2} \) |
| 29 | \( 1 - 36.6iT - 841T^{2} \) |
| 31 | \( 1 + 36.6iT - 961T^{2} \) |
| 37 | \( 1 + 33.6iT - 1.36e3T^{2} \) |
| 41 | \( 1 - 36.6iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 68.5T + 1.84e3T^{2} \) |
| 47 | \( 1 - 9.79T + 2.20e3T^{2} \) |
| 53 | \( 1 + 56.1iT - 2.80e3T^{2} \) |
| 59 | \( 1 + 73.3iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 100T + 3.72e3T^{2} \) |
| 67 | \( 1 + 11.2iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 36.6iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 19.5T + 5.32e3T^{2} \) |
| 79 | \( 1 - 109. iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 29.3T + 6.88e3T^{2} \) |
| 89 | \( 1 + 146. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + 123. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.110378349958317522645713513368, −8.386789402862347362407271916381, −7.05855272461290219669864923542, −6.50441956100096602615952649546, −5.61479893756429847183601068491, −4.58392839608896344767036712364, −3.85147787726749751525558779307, −3.26109704006816808844018487537, −1.91141159342762503808870248590, −0.02566179177811209413519894636,
0.957319116968392446389957088097, 2.28612035555357132984621514551, 3.06190390045238083023835253805, 4.15225107781526813745038783942, 5.38261454771521391094404404423, 6.43073395322092381783298602363, 6.67314197364976116622535032726, 7.45451955675244566761647486214, 8.360926623925369448510955117107, 9.090540284094241102227437234975