Properties

Label 2-192-8.5-c1-0-3
Degree $2$
Conductor $192$
Sign $-0.258 + 0.965i$
Analytic cond. $1.53312$
Root an. cond. $1.23819$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·3-s − 3.46i·5-s − 3.46·7-s − 9-s − 3.46·15-s + 6·17-s − 4i·19-s + 3.46i·21-s + 6.92·23-s − 6.99·25-s + i·27-s − 3.46i·29-s + 3.46·31-s + 11.9i·35-s + 6.92i·37-s + ⋯
L(s)  = 1  − 0.577i·3-s − 1.54i·5-s − 1.30·7-s − 0.333·9-s − 0.894·15-s + 1.45·17-s − 0.917i·19-s + 0.755i·21-s + 1.44·23-s − 1.39·25-s + 0.192i·27-s − 0.643i·29-s + 0.622·31-s + 2.02i·35-s + 1.13i·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.258 + 0.965i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.258 + 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(192\)    =    \(2^{6} \cdot 3\)
Sign: $-0.258 + 0.965i$
Analytic conductor: \(1.53312\)
Root analytic conductor: \(1.23819\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{192} (97, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 192,\ (\ :1/2),\ -0.258 + 0.965i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.606131 - 0.789925i\)
\(L(\frac12)\) \(\approx\) \(0.606131 - 0.789925i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + iT \)
good5 \( 1 + 3.46iT - 5T^{2} \)
7 \( 1 + 3.46T + 7T^{2} \)
11 \( 1 - 11T^{2} \)
13 \( 1 - 13T^{2} \)
17 \( 1 - 6T + 17T^{2} \)
19 \( 1 + 4iT - 19T^{2} \)
23 \( 1 - 6.92T + 23T^{2} \)
29 \( 1 + 3.46iT - 29T^{2} \)
31 \( 1 - 3.46T + 31T^{2} \)
37 \( 1 - 6.92iT - 37T^{2} \)
41 \( 1 + 6T + 41T^{2} \)
43 \( 1 - 4iT - 43T^{2} \)
47 \( 1 - 6.92T + 47T^{2} \)
53 \( 1 - 3.46iT - 53T^{2} \)
59 \( 1 + 12iT - 59T^{2} \)
61 \( 1 - 6.92iT - 61T^{2} \)
67 \( 1 - 4iT - 67T^{2} \)
71 \( 1 + 6.92T + 71T^{2} \)
73 \( 1 - 2T + 73T^{2} \)
79 \( 1 + 10.3T + 79T^{2} \)
83 \( 1 - 83T^{2} \)
89 \( 1 - 6T + 89T^{2} \)
97 \( 1 + 2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.48267599121218769925128680887, −11.62827665089967695760498063079, −10.02485071710212256049631450457, −9.201938143900970063825023534401, −8.314869136830471831185090861616, −7.08786237725335792325890154552, −5.90217453832004117775645133580, −4.78591559504293675955562833554, −3.10614619104068965326720920865, −0.941758406426872705971917835081, 2.94859128859384174501581603221, 3.62548604982906873751766525295, 5.59151821386866085061786196819, 6.61017659790386139802871915396, 7.52074758091274109258973991389, 9.095635300961643552420937018514, 10.16891608252132565382441305515, 10.50710315024056900055444903250, 11.74748520578607004936442968860, 12.78365828156245111806504779527

Graph of the $Z$-function along the critical line