L(s) = 1 | − i·3-s − 3.46i·5-s − 3.46·7-s − 9-s − 3.46·15-s + 6·17-s − 4i·19-s + 3.46i·21-s + 6.92·23-s − 6.99·25-s + i·27-s − 3.46i·29-s + 3.46·31-s + 11.9i·35-s + 6.92i·37-s + ⋯ |
L(s) = 1 | − 0.577i·3-s − 1.54i·5-s − 1.30·7-s − 0.333·9-s − 0.894·15-s + 1.45·17-s − 0.917i·19-s + 0.755i·21-s + 1.44·23-s − 1.39·25-s + 0.192i·27-s − 0.643i·29-s + 0.622·31-s + 2.02i·35-s + 1.13i·37-s + ⋯ |
Λ(s)=(=(192s/2ΓC(s)L(s)(−0.258+0.965i)Λ(2−s)
Λ(s)=(=(192s/2ΓC(s+1/2)L(s)(−0.258+0.965i)Λ(1−s)
Degree: |
2 |
Conductor: |
192
= 26⋅3
|
Sign: |
−0.258+0.965i
|
Analytic conductor: |
1.53312 |
Root analytic conductor: |
1.23819 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ192(97,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 192, ( :1/2), −0.258+0.965i)
|
Particular Values
L(1) |
≈ |
0.606131−0.789925i |
L(21) |
≈ |
0.606131−0.789925i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+iT |
good | 5 | 1+3.46iT−5T2 |
| 7 | 1+3.46T+7T2 |
| 11 | 1−11T2 |
| 13 | 1−13T2 |
| 17 | 1−6T+17T2 |
| 19 | 1+4iT−19T2 |
| 23 | 1−6.92T+23T2 |
| 29 | 1+3.46iT−29T2 |
| 31 | 1−3.46T+31T2 |
| 37 | 1−6.92iT−37T2 |
| 41 | 1+6T+41T2 |
| 43 | 1−4iT−43T2 |
| 47 | 1−6.92T+47T2 |
| 53 | 1−3.46iT−53T2 |
| 59 | 1+12iT−59T2 |
| 61 | 1−6.92iT−61T2 |
| 67 | 1−4iT−67T2 |
| 71 | 1+6.92T+71T2 |
| 73 | 1−2T+73T2 |
| 79 | 1+10.3T+79T2 |
| 83 | 1−83T2 |
| 89 | 1−6T+89T2 |
| 97 | 1+2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.48267599121218769925128680887, −11.62827665089967695760498063079, −10.02485071710212256049631450457, −9.201938143900970063825023534401, −8.314869136830471831185090861616, −7.08786237725335792325890154552, −5.90217453832004117775645133580, −4.78591559504293675955562833554, −3.10614619104068965326720920865, −0.941758406426872705971917835081,
2.94859128859384174501581603221, 3.62548604982906873751766525295, 5.59151821386866085061786196819, 6.61017659790386139802871915396, 7.52074758091274109258973991389, 9.095635300961643552420937018514, 10.16891608252132565382441305515, 10.50710315024056900055444903250, 11.74748520578607004936442968860, 12.78365828156245111806504779527