L(s) = 1 | − 46.7i·3-s − 726·5-s + 3.05e3i·7-s − 2.18e3·9-s + 1.32e4i·11-s − 3.90e4·13-s + 3.39e4i·15-s − 6.58e4·17-s − 1.30e5i·19-s + 1.42e5·21-s + 5.02e5i·23-s + 1.36e5·25-s + 1.02e5i·27-s − 2.02e5·29-s + 1.19e6i·31-s + ⋯ |
L(s) = 1 | − 0.577i·3-s − 1.16·5-s + 1.27i·7-s − 0.333·9-s + 0.907i·11-s − 1.36·13-s + 0.670i·15-s − 0.787·17-s − 0.999i·19-s + 0.734·21-s + 1.79i·23-s + 0.349·25-s + 0.192i·27-s − 0.285·29-s + 1.29i·31-s + ⋯ |
Λ(s)=(=(192s/2ΓC(s)L(s)iΛ(9−s)
Λ(s)=(=(192s/2ΓC(s+4)L(s)iΛ(1−s)
Degree: |
2 |
Conductor: |
192
= 26⋅3
|
Sign: |
i
|
Analytic conductor: |
78.2166 |
Root analytic conductor: |
8.84402 |
Motivic weight: |
8 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ192(127,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 192, ( :4), i)
|
Particular Values
L(29) |
≈ |
0.3721663323 |
L(21) |
≈ |
0.3721663323 |
L(5) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+46.7iT |
good | 5 | 1+726T+3.90e5T2 |
| 7 | 1−3.05e3iT−5.76e6T2 |
| 11 | 1−1.32e4iT−2.14e8T2 |
| 13 | 1+3.90e4T+8.15e8T2 |
| 17 | 1+6.58e4T+6.97e9T2 |
| 19 | 1+1.30e5iT−1.69e10T2 |
| 23 | 1−5.02e5iT−7.83e10T2 |
| 29 | 1+2.02e5T+5.00e11T2 |
| 31 | 1−1.19e6iT−8.52e11T2 |
| 37 | 1−1.87e6T+3.51e12T2 |
| 41 | 1−3.09e6T+7.98e12T2 |
| 43 | 1+2.26e6iT−1.16e13T2 |
| 47 | 1+6.35e6iT−2.38e13T2 |
| 53 | 1−1.06e6T+6.22e13T2 |
| 59 | 1+5.76e6iT−1.46e14T2 |
| 61 | 1+1.71e7T+1.91e14T2 |
| 67 | 1−2.74e7iT−4.06e14T2 |
| 71 | 1+3.98e7iT−6.45e14T2 |
| 73 | 1+5.32e7T+8.06e14T2 |
| 79 | 1−1.82e7iT−1.51e15T2 |
| 83 | 1+7.78e6iT−2.25e15T2 |
| 89 | 1−8.66e7T+3.93e15T2 |
| 97 | 1+7.39e7T+7.83e15T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.17513710424716372152590745335, −9.605679495620223711953035451261, −8.765986195443750263142854088507, −7.58594207577390372571239401753, −7.01299975256885672815583259933, −5.49429930017788776955338228201, −4.46925230223090905293057131511, −2.91902204570390844733044676306, −1.91507540596991583429384839084, −0.13454411129309862285288249384,
0.66558703464493010180718701347, 2.73517508324664461255625713971, 4.06683794083073691805518643085, 4.48370642596426067518237760931, 6.17092911418640255175017106012, 7.48489104635473035342332162386, 8.097004784722189091895479379890, 9.407756429300799375277238845743, 10.50132535522311251840591056381, 11.13402362399870035272037751365