L(s) = 1 | + 4·19-s − 4·49-s − 4·61-s + 8·79-s − 81-s + 4·109-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + ⋯ |
L(s) = 1 | + 4·19-s − 4·49-s − 4·61-s + 8·79-s − 81-s + 4·109-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{4} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{4} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.540452346\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.540452346\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−6.70403297876323933341092950439, −6.60406978827796684763351198882, −6.22870055801824354069459311506, −6.15482831036092311680169594509, −6.02832272998309290544903564838, −5.53044713783399615094760808943, −5.48446583179660042208604885098, −5.32846993092474744399879322591, −4.93037100735730426237105588860, −4.89964597872888503742949498674, −4.66616075109678715808851924896, −4.54147855639560133824732523319, −4.21035481134347670454651788897, −3.72322816787976880019680435729, −3.57781372830606672855267773889, −3.25647727923477409085927961514, −3.13451694512454482195420610889, −3.08555575098576558348423473765, −2.98967766695846537264953587272, −2.17186569299943386037840278972, −1.95913707563857676612491659535, −1.95778654842782115418464481243, −1.38653300217874830927539256674, −1.02629549577599849375829471900, −0.77884833184188450067356919233,
0.77884833184188450067356919233, 1.02629549577599849375829471900, 1.38653300217874830927539256674, 1.95778654842782115418464481243, 1.95913707563857676612491659535, 2.17186569299943386037840278972, 2.98967766695846537264953587272, 3.08555575098576558348423473765, 3.13451694512454482195420610889, 3.25647727923477409085927961514, 3.57781372830606672855267773889, 3.72322816787976880019680435729, 4.21035481134347670454651788897, 4.54147855639560133824732523319, 4.66616075109678715808851924896, 4.89964597872888503742949498674, 4.93037100735730426237105588860, 5.32846993092474744399879322591, 5.48446583179660042208604885098, 5.53044713783399615094760808943, 6.02832272998309290544903564838, 6.15482831036092311680169594509, 6.22870055801824354069459311506, 6.60406978827796684763351198882, 6.70403297876323933341092950439