L(s) = 1 | + (0.707 − 0.707i)3-s + (−0.707 − 0.707i)5-s − 1.00i·9-s − 1.00·15-s − 1.41·17-s + (1 − i)19-s − 1.41i·23-s + 1.00i·25-s + (−0.707 − 0.707i)27-s + (−0.707 + 0.707i)45-s + 1.41·47-s − 49-s + (−1.00 + 1.00i)51-s − 1.41i·57-s + (−1 + i)61-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)3-s + (−0.707 − 0.707i)5-s − 1.00i·9-s − 1.00·15-s − 1.41·17-s + (1 − i)19-s − 1.41i·23-s + 1.00i·25-s + (−0.707 − 0.707i)27-s + (−0.707 + 0.707i)45-s + 1.41·47-s − 49-s + (−1.00 + 1.00i)51-s − 1.41i·57-s + (−1 + i)61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.382 + 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.382 + 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.152884520\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.152884520\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.707 + 0.707i)T \) |
| 5 | \( 1 + (0.707 + 0.707i)T \) |
good | 7 | \( 1 + T^{2} \) |
| 11 | \( 1 - iT^{2} \) |
| 13 | \( 1 + iT^{2} \) |
| 17 | \( 1 + 1.41T + T^{2} \) |
| 19 | \( 1 + (-1 + i)T - iT^{2} \) |
| 23 | \( 1 + 1.41iT - T^{2} \) |
| 29 | \( 1 + iT^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 - 1.41T + T^{2} \) |
| 53 | \( 1 + iT^{2} \) |
| 59 | \( 1 - iT^{2} \) |
| 61 | \( 1 + (1 - i)T - iT^{2} \) |
| 67 | \( 1 + iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 - 2T + T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.897388278363709874948411656893, −8.498316364981478303411875626758, −7.58309357102454823863004241707, −6.99616676341377960169103458985, −6.15482831036092311680169594509, −4.89964597872888503742949498674, −4.21035481134347670454651788897, −3.13451694512454482195420610889, −2.17186569299943386037840278972, −0.77884833184188450067356919233,
1.95778654842782115418464481243, 3.08555575098576558348423473765, 3.72322816787976880019680435729, 4.54147855639560133824732523319, 5.53044713783399615094760808943, 6.60406978827796684763351198882, 7.55273875562359617614173084054, 7.962387441856983550635079094090, 8.942714261574991466509451618012, 9.571572762585456116195893508332