L(s) = 1 | + (0.707 − 0.707i)3-s + (−0.707 − 0.707i)5-s − 1.00i·9-s − 1.00·15-s − 1.41·17-s + (1 − i)19-s − 1.41i·23-s + 1.00i·25-s + (−0.707 − 0.707i)27-s + (−0.707 + 0.707i)45-s + 1.41·47-s − 49-s + (−1.00 + 1.00i)51-s − 1.41i·57-s + (−1 + i)61-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)3-s + (−0.707 − 0.707i)5-s − 1.00i·9-s − 1.00·15-s − 1.41·17-s + (1 − i)19-s − 1.41i·23-s + 1.00i·25-s + (−0.707 − 0.707i)27-s + (−0.707 + 0.707i)45-s + 1.41·47-s − 49-s + (−1.00 + 1.00i)51-s − 1.41i·57-s + (−1 + i)61-s + ⋯ |
Λ(s)=(=(1920s/2ΓC(s)L(s)(−0.382+0.923i)Λ(1−s)
Λ(s)=(=(1920s/2ΓC(s)L(s)(−0.382+0.923i)Λ(1−s)
Degree: |
2 |
Conductor: |
1920
= 27⋅3⋅5
|
Sign: |
−0.382+0.923i
|
Analytic conductor: |
0.958204 |
Root analytic conductor: |
0.978879 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1920(1889,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1920, ( :0), −0.382+0.923i)
|
Particular Values
L(21) |
≈ |
1.152884520 |
L(21) |
≈ |
1.152884520 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−0.707+0.707i)T |
| 5 | 1+(0.707+0.707i)T |
good | 7 | 1+T2 |
| 11 | 1−iT2 |
| 13 | 1+iT2 |
| 17 | 1+1.41T+T2 |
| 19 | 1+(−1+i)T−iT2 |
| 23 | 1+1.41iT−T2 |
| 29 | 1+iT2 |
| 31 | 1+T2 |
| 37 | 1−iT2 |
| 41 | 1+T2 |
| 43 | 1−iT2 |
| 47 | 1−1.41T+T2 |
| 53 | 1+iT2 |
| 59 | 1−iT2 |
| 61 | 1+(1−i)T−iT2 |
| 67 | 1+iT2 |
| 71 | 1+T2 |
| 73 | 1+T2 |
| 79 | 1−2T+T2 |
| 83 | 1−iT2 |
| 89 | 1+T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.897388278363709874948411656893, −8.498316364981478303411875626758, −7.58309357102454823863004241707, −6.99616676341377960169103458985, −6.15482831036092311680169594509, −4.89964597872888503742949498674, −4.21035481134347670454651788897, −3.13451694512454482195420610889, −2.17186569299943386037840278972, −0.77884833184188450067356919233,
1.95778654842782115418464481243, 3.08555575098576558348423473765, 3.72322816787976880019680435729, 4.54147855639560133824732523319, 5.53044713783399615094760808943, 6.60406978827796684763351198882, 7.55273875562359617614173084054, 7.962387441856983550635079094090, 8.942714261574991466509451618012, 9.571572762585456116195893508332