L(s) = 1 | + (0.634 + 0.773i)2-s + (−0.956 + 0.290i)3-s + (−0.195 + 0.980i)4-s + (0.995 − 0.0980i)5-s + (−0.831 − 0.555i)6-s + (−0.881 + 0.471i)8-s + (0.831 − 0.555i)9-s + (0.707 + 0.707i)10-s + (−0.0980 − 0.995i)12-s + (−0.923 + 0.382i)15-s + (−0.923 − 0.382i)16-s + (−0.181 − 0.0750i)17-s + (0.956 + 0.290i)18-s + (1.11 + 1.36i)19-s + (−0.0980 + 0.995i)20-s + ⋯ |
L(s) = 1 | + (0.634 + 0.773i)2-s + (−0.956 + 0.290i)3-s + (−0.195 + 0.980i)4-s + (0.995 − 0.0980i)5-s + (−0.831 − 0.555i)6-s + (−0.881 + 0.471i)8-s + (0.831 − 0.555i)9-s + (0.707 + 0.707i)10-s + (−0.0980 − 0.995i)12-s + (−0.923 + 0.382i)15-s + (−0.923 − 0.382i)16-s + (−0.181 − 0.0750i)17-s + (0.956 + 0.290i)18-s + (1.11 + 1.36i)19-s + (−0.0980 + 0.995i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.427 - 0.903i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.427 - 0.903i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.342058792\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.342058792\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.634 - 0.773i)T \) |
| 3 | \( 1 + (0.956 - 0.290i)T \) |
| 5 | \( 1 + (-0.995 + 0.0980i)T \) |
good | 7 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 11 | \( 1 + (0.555 - 0.831i)T^{2} \) |
| 13 | \( 1 + (0.980 + 0.195i)T^{2} \) |
| 17 | \( 1 + (0.181 + 0.0750i)T + (0.707 + 0.707i)T^{2} \) |
| 19 | \( 1 + (-1.11 - 1.36i)T + (-0.195 + 0.980i)T^{2} \) |
| 23 | \( 1 + (0.301 - 1.51i)T + (-0.923 - 0.382i)T^{2} \) |
| 29 | \( 1 + (-0.555 - 0.831i)T^{2} \) |
| 31 | \( 1 + (-0.275 + 0.275i)T - iT^{2} \) |
| 37 | \( 1 + (-0.195 - 0.980i)T^{2} \) |
| 41 | \( 1 + (-0.923 - 0.382i)T^{2} \) |
| 43 | \( 1 + (-0.831 - 0.555i)T^{2} \) |
| 47 | \( 1 + (-0.222 + 0.536i)T + (-0.707 - 0.707i)T^{2} \) |
| 53 | \( 1 + (0.979 - 0.523i)T + (0.555 - 0.831i)T^{2} \) |
| 59 | \( 1 + (0.980 - 0.195i)T^{2} \) |
| 61 | \( 1 + (-0.273 - 0.902i)T + (-0.831 + 0.555i)T^{2} \) |
| 67 | \( 1 + (0.831 - 0.555i)T^{2} \) |
| 71 | \( 1 + (-0.382 - 0.923i)T^{2} \) |
| 73 | \( 1 + (0.382 - 0.923i)T^{2} \) |
| 79 | \( 1 + (0.707 + 1.70i)T + (-0.707 + 0.707i)T^{2} \) |
| 83 | \( 1 + (1.28 - 1.05i)T + (0.195 - 0.980i)T^{2} \) |
| 89 | \( 1 + (0.923 - 0.382i)T^{2} \) |
| 97 | \( 1 + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.710063343198948032123117765714, −8.914458830684251264390383865872, −7.80611658486697960200080713862, −7.08738827077406799728514403914, −6.18818644940989492691636294319, −5.64740147579137892277136501945, −5.13111038920741816657284227419, −4.11281964544669360056335574104, −3.18506696337845341771873356682, −1.62379898251794784201869436310,
0.984643075519604886101241121566, 2.13259106406426040867456880306, 3.02953465010534006398435480071, 4.50519715114672908358362805117, 5.00087583960738030352609225256, 5.87382609962848777705990551935, 6.48400335596443868232104254518, 7.18307688617482357398860830524, 8.577856217622875057706214584250, 9.548371537106066114425770405501