L(s) = 1 | + (0.634 + 0.773i)2-s + (−0.956 + 0.290i)3-s + (−0.195 + 0.980i)4-s + (0.995 − 0.0980i)5-s + (−0.831 − 0.555i)6-s + (−0.881 + 0.471i)8-s + (0.831 − 0.555i)9-s + (0.707 + 0.707i)10-s + (−0.0980 − 0.995i)12-s + (−0.923 + 0.382i)15-s + (−0.923 − 0.382i)16-s + (−0.181 − 0.0750i)17-s + (0.956 + 0.290i)18-s + (1.11 + 1.36i)19-s + (−0.0980 + 0.995i)20-s + ⋯ |
L(s) = 1 | + (0.634 + 0.773i)2-s + (−0.956 + 0.290i)3-s + (−0.195 + 0.980i)4-s + (0.995 − 0.0980i)5-s + (−0.831 − 0.555i)6-s + (−0.881 + 0.471i)8-s + (0.831 − 0.555i)9-s + (0.707 + 0.707i)10-s + (−0.0980 − 0.995i)12-s + (−0.923 + 0.382i)15-s + (−0.923 − 0.382i)16-s + (−0.181 − 0.0750i)17-s + (0.956 + 0.290i)18-s + (1.11 + 1.36i)19-s + (−0.0980 + 0.995i)20-s + ⋯ |
Λ(s)=(=(1920s/2ΓC(s)L(s)(−0.427−0.903i)Λ(1−s)
Λ(s)=(=(1920s/2ΓC(s)L(s)(−0.427−0.903i)Λ(1−s)
Degree: |
2 |
Conductor: |
1920
= 27⋅3⋅5
|
Sign: |
−0.427−0.903i
|
Analytic conductor: |
0.958204 |
Root analytic conductor: |
0.978879 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1920(1229,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1920, ( :0), −0.427−0.903i)
|
Particular Values
L(21) |
≈ |
1.342058792 |
L(21) |
≈ |
1.342058792 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.634−0.773i)T |
| 3 | 1+(0.956−0.290i)T |
| 5 | 1+(−0.995+0.0980i)T |
good | 7 | 1+(0.382+0.923i)T2 |
| 11 | 1+(0.555−0.831i)T2 |
| 13 | 1+(0.980+0.195i)T2 |
| 17 | 1+(0.181+0.0750i)T+(0.707+0.707i)T2 |
| 19 | 1+(−1.11−1.36i)T+(−0.195+0.980i)T2 |
| 23 | 1+(0.301−1.51i)T+(−0.923−0.382i)T2 |
| 29 | 1+(−0.555−0.831i)T2 |
| 31 | 1+(−0.275+0.275i)T−iT2 |
| 37 | 1+(−0.195−0.980i)T2 |
| 41 | 1+(−0.923−0.382i)T2 |
| 43 | 1+(−0.831−0.555i)T2 |
| 47 | 1+(−0.222+0.536i)T+(−0.707−0.707i)T2 |
| 53 | 1+(0.979−0.523i)T+(0.555−0.831i)T2 |
| 59 | 1+(0.980−0.195i)T2 |
| 61 | 1+(−0.273−0.902i)T+(−0.831+0.555i)T2 |
| 67 | 1+(0.831−0.555i)T2 |
| 71 | 1+(−0.382−0.923i)T2 |
| 73 | 1+(0.382−0.923i)T2 |
| 79 | 1+(0.707+1.70i)T+(−0.707+0.707i)T2 |
| 83 | 1+(1.28−1.05i)T+(0.195−0.980i)T2 |
| 89 | 1+(0.923−0.382i)T2 |
| 97 | 1+iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.710063343198948032123117765714, −8.914458830684251264390383865872, −7.80611658486697960200080713862, −7.08738827077406799728514403914, −6.18818644940989492691636294319, −5.64740147579137892277136501945, −5.13111038920741816657284227419, −4.11281964544669360056335574104, −3.18506696337845341771873356682, −1.62379898251794784201869436310,
0.984643075519604886101241121566, 2.13259106406426040867456880306, 3.02953465010534006398435480071, 4.50519715114672908358362805117, 5.00087583960738030352609225256, 5.87382609962848777705990551935, 6.48400335596443868232104254518, 7.18307688617482357398860830524, 8.577856217622875057706214584250, 9.548371537106066114425770405501