L(s) = 1 | + (−0.881 − 0.471i)2-s + (−0.634 − 0.773i)3-s + (0.555 + 0.831i)4-s + (0.956 + 0.290i)5-s + (0.195 + 0.980i)6-s + (−0.0980 − 0.995i)8-s + (−0.195 + 0.980i)9-s + (−0.707 − 0.707i)10-s + (0.290 − 0.956i)12-s + (−0.382 − 0.923i)15-s + (−0.382 + 0.923i)16-s + (0.222 − 0.536i)17-s + (0.634 − 0.773i)18-s + (−0.172 − 0.0924i)19-s + (0.290 + 0.956i)20-s + ⋯ |
L(s) = 1 | + (−0.881 − 0.471i)2-s + (−0.634 − 0.773i)3-s + (0.555 + 0.831i)4-s + (0.956 + 0.290i)5-s + (0.195 + 0.980i)6-s + (−0.0980 − 0.995i)8-s + (−0.195 + 0.980i)9-s + (−0.707 − 0.707i)10-s + (0.290 − 0.956i)12-s + (−0.382 − 0.923i)15-s + (−0.382 + 0.923i)16-s + (0.222 − 0.536i)17-s + (0.634 − 0.773i)18-s + (−0.172 − 0.0924i)19-s + (0.290 + 0.956i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.427 + 0.903i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.427 + 0.903i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7353193127\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7353193127\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.881 + 0.471i)T \) |
| 3 | \( 1 + (0.634 + 0.773i)T \) |
| 5 | \( 1 + (-0.956 - 0.290i)T \) |
good | 7 | \( 1 + (-0.923 + 0.382i)T^{2} \) |
| 11 | \( 1 + (-0.980 + 0.195i)T^{2} \) |
| 13 | \( 1 + (0.831 - 0.555i)T^{2} \) |
| 17 | \( 1 + (-0.222 + 0.536i)T + (-0.707 - 0.707i)T^{2} \) |
| 19 | \( 1 + (0.172 + 0.0924i)T + (0.555 + 0.831i)T^{2} \) |
| 23 | \( 1 + (0.523 + 0.783i)T + (-0.382 + 0.923i)T^{2} \) |
| 29 | \( 1 + (0.980 + 0.195i)T^{2} \) |
| 31 | \( 1 + (-0.785 + 0.785i)T - iT^{2} \) |
| 37 | \( 1 + (0.555 - 0.831i)T^{2} \) |
| 41 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 43 | \( 1 + (0.195 + 0.980i)T^{2} \) |
| 47 | \( 1 + (-1.42 - 0.591i)T + (0.707 + 0.707i)T^{2} \) |
| 53 | \( 1 + (-0.192 - 1.95i)T + (-0.980 + 0.195i)T^{2} \) |
| 59 | \( 1 + (0.831 + 0.555i)T^{2} \) |
| 61 | \( 1 + (-1.53 + 1.26i)T + (0.195 - 0.980i)T^{2} \) |
| 67 | \( 1 + (-0.195 + 0.980i)T^{2} \) |
| 71 | \( 1 + (0.923 - 0.382i)T^{2} \) |
| 73 | \( 1 + (-0.923 - 0.382i)T^{2} \) |
| 79 | \( 1 + (-0.707 + 0.292i)T + (0.707 - 0.707i)T^{2} \) |
| 83 | \( 1 + (0.183 - 0.344i)T + (-0.555 - 0.831i)T^{2} \) |
| 89 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 97 | \( 1 + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.350264389525125664447554021256, −8.498332861024472321638217686866, −7.68305960502946068500961794327, −6.93853123448907911416570976471, −6.27642338335382965564845282758, −5.52274470801818732466002294383, −4.28772375767253605765976746639, −2.76740480763780898880604927769, −2.16144952567403029596387187040, −0.959661349615277954646785574665,
1.15354620035108706012451273534, 2.42175024666545382190412833534, 3.86566418969955950609449214069, 5.06907440870230373123526592844, 5.60456870474248319389705811869, 6.31042114450035100085794282855, 7.03761495089841367111905402833, 8.214654754040759234073335373485, 8.893409258278248382987935115297, 9.548385508063944669832165982296