L(s) = 1 | + (−0.881 − 0.471i)2-s + (−0.634 − 0.773i)3-s + (0.555 + 0.831i)4-s + (0.956 + 0.290i)5-s + (0.195 + 0.980i)6-s + (−0.0980 − 0.995i)8-s + (−0.195 + 0.980i)9-s + (−0.707 − 0.707i)10-s + (0.290 − 0.956i)12-s + (−0.382 − 0.923i)15-s + (−0.382 + 0.923i)16-s + (0.222 − 0.536i)17-s + (0.634 − 0.773i)18-s + (−0.172 − 0.0924i)19-s + (0.290 + 0.956i)20-s + ⋯ |
L(s) = 1 | + (−0.881 − 0.471i)2-s + (−0.634 − 0.773i)3-s + (0.555 + 0.831i)4-s + (0.956 + 0.290i)5-s + (0.195 + 0.980i)6-s + (−0.0980 − 0.995i)8-s + (−0.195 + 0.980i)9-s + (−0.707 − 0.707i)10-s + (0.290 − 0.956i)12-s + (−0.382 − 0.923i)15-s + (−0.382 + 0.923i)16-s + (0.222 − 0.536i)17-s + (0.634 − 0.773i)18-s + (−0.172 − 0.0924i)19-s + (0.290 + 0.956i)20-s + ⋯ |
Λ(s)=(=(1920s/2ΓC(s)L(s)(0.427+0.903i)Λ(1−s)
Λ(s)=(=(1920s/2ΓC(s)L(s)(0.427+0.903i)Λ(1−s)
Degree: |
2 |
Conductor: |
1920
= 27⋅3⋅5
|
Sign: |
0.427+0.903i
|
Analytic conductor: |
0.958204 |
Root analytic conductor: |
0.978879 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1920(509,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1920, ( :0), 0.427+0.903i)
|
Particular Values
L(21) |
≈ |
0.7353193127 |
L(21) |
≈ |
0.7353193127 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.881+0.471i)T |
| 3 | 1+(0.634+0.773i)T |
| 5 | 1+(−0.956−0.290i)T |
good | 7 | 1+(−0.923+0.382i)T2 |
| 11 | 1+(−0.980+0.195i)T2 |
| 13 | 1+(0.831−0.555i)T2 |
| 17 | 1+(−0.222+0.536i)T+(−0.707−0.707i)T2 |
| 19 | 1+(0.172+0.0924i)T+(0.555+0.831i)T2 |
| 23 | 1+(0.523+0.783i)T+(−0.382+0.923i)T2 |
| 29 | 1+(0.980+0.195i)T2 |
| 31 | 1+(−0.785+0.785i)T−iT2 |
| 37 | 1+(0.555−0.831i)T2 |
| 41 | 1+(−0.382+0.923i)T2 |
| 43 | 1+(0.195+0.980i)T2 |
| 47 | 1+(−1.42−0.591i)T+(0.707+0.707i)T2 |
| 53 | 1+(−0.192−1.95i)T+(−0.980+0.195i)T2 |
| 59 | 1+(0.831+0.555i)T2 |
| 61 | 1+(−1.53+1.26i)T+(0.195−0.980i)T2 |
| 67 | 1+(−0.195+0.980i)T2 |
| 71 | 1+(0.923−0.382i)T2 |
| 73 | 1+(−0.923−0.382i)T2 |
| 79 | 1+(−0.707+0.292i)T+(0.707−0.707i)T2 |
| 83 | 1+(0.183−0.344i)T+(−0.555−0.831i)T2 |
| 89 | 1+(0.382+0.923i)T2 |
| 97 | 1+iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.350264389525125664447554021256, −8.498332861024472321638217686866, −7.68305960502946068500961794327, −6.93853123448907911416570976471, −6.27642338335382965564845282758, −5.52274470801818732466002294383, −4.28772375767253605765976746639, −2.76740480763780898880604927769, −2.16144952567403029596387187040, −0.959661349615277954646785574665,
1.15354620035108706012451273534, 2.42175024666545382190412833534, 3.86566418969955950609449214069, 5.06907440870230373123526592844, 5.60456870474248319389705811869, 6.31042114450035100085794282855, 7.03761495089841367111905402833, 8.214654754040759234073335373485, 8.893409258278248382987935115297, 9.548385508063944669832165982296