Properties

Label 2-1920-1.1-c1-0-27
Degree $2$
Conductor $1920$
Sign $-1$
Analytic cond. $15.3312$
Root an. cond. $3.91551$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 2·7-s + 9-s + 2·11-s − 6·13-s − 15-s − 6·17-s − 6·19-s − 2·21-s − 2·23-s + 25-s − 27-s − 2·29-s + 4·31-s − 2·33-s + 2·35-s − 10·37-s + 6·39-s − 2·41-s + 8·43-s + 45-s + 6·47-s − 3·49-s + 6·51-s − 6·53-s + 2·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 0.755·7-s + 1/3·9-s + 0.603·11-s − 1.66·13-s − 0.258·15-s − 1.45·17-s − 1.37·19-s − 0.436·21-s − 0.417·23-s + 1/5·25-s − 0.192·27-s − 0.371·29-s + 0.718·31-s − 0.348·33-s + 0.338·35-s − 1.64·37-s + 0.960·39-s − 0.312·41-s + 1.21·43-s + 0.149·45-s + 0.875·47-s − 3/7·49-s + 0.840·51-s − 0.824·53-s + 0.269·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1920\)    =    \(2^{7} \cdot 3 \cdot 5\)
Sign: $-1$
Analytic conductor: \(15.3312\)
Root analytic conductor: \(3.91551\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1920,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
good7 \( 1 - 2 T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
13 \( 1 + 6 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 + 6 T + p T^{2} \)
23 \( 1 + 2 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + 10 T + p T^{2} \)
61 \( 1 - 14 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 + 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.880832193208585765401663293455, −8.046181383612075719656590478555, −7.02737282613633366864692960599, −6.53199428258403666720874535161, −5.53548870346440664658998718897, −4.70355394163844512696991108806, −4.15763471966160038340013508239, −2.49145047879749491040660978061, −1.73508381507895261886045237038, 0, 1.73508381507895261886045237038, 2.49145047879749491040660978061, 4.15763471966160038340013508239, 4.70355394163844512696991108806, 5.53548870346440664658998718897, 6.53199428258403666720874535161, 7.02737282613633366864692960599, 8.046181383612075719656590478555, 8.880832193208585765401663293455

Graph of the $Z$-function along the critical line