L(s) = 1 | + 3-s − 5-s + 2·7-s + 9-s − 2·11-s + 6·13-s − 15-s − 6·17-s + 6·19-s + 2·21-s − 2·23-s + 25-s + 27-s + 2·29-s + 4·31-s − 2·33-s − 2·35-s + 10·37-s + 6·39-s − 2·41-s − 8·43-s − 45-s + 6·47-s − 3·49-s − 6·51-s + 6·53-s + 2·55-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 0.447·5-s + 0.755·7-s + 1/3·9-s − 0.603·11-s + 1.66·13-s − 0.258·15-s − 1.45·17-s + 1.37·19-s + 0.436·21-s − 0.417·23-s + 1/5·25-s + 0.192·27-s + 0.371·29-s + 0.718·31-s − 0.348·33-s − 0.338·35-s + 1.64·37-s + 0.960·39-s − 0.312·41-s − 1.21·43-s − 0.149·45-s + 0.875·47-s − 3/7·49-s − 0.840·51-s + 0.824·53-s + 0.269·55-s + ⋯ |
Λ(s)=(=(1920s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1920s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.286967511 |
L(21) |
≈ |
2.286967511 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 5 | 1+T |
good | 7 | 1−2T+pT2 |
| 11 | 1+2T+pT2 |
| 13 | 1−6T+pT2 |
| 17 | 1+6T+pT2 |
| 19 | 1−6T+pT2 |
| 23 | 1+2T+pT2 |
| 29 | 1−2T+pT2 |
| 31 | 1−4T+pT2 |
| 37 | 1−10T+pT2 |
| 41 | 1+2T+pT2 |
| 43 | 1+8T+pT2 |
| 47 | 1−6T+pT2 |
| 53 | 1−6T+pT2 |
| 59 | 1−10T+pT2 |
| 61 | 1+14T+pT2 |
| 67 | 1−8T+pT2 |
| 71 | 1−8T+pT2 |
| 73 | 1−2T+pT2 |
| 79 | 1+pT2 |
| 83 | 1−12T+pT2 |
| 89 | 1+10T+pT2 |
| 97 | 1+6T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.009782191031173971561105640243, −8.300454644250546298995728078650, −7.921959866288433993862715383143, −6.94048247529211023854157343618, −6.07380284801590675671363852873, −5.00646292439135152348096305314, −4.21182094038261900638983310748, −3.34183055256449834784989322034, −2.28231008886779719005891093166, −1.05573399756661793291429489696,
1.05573399756661793291429489696, 2.28231008886779719005891093166, 3.34183055256449834784989322034, 4.21182094038261900638983310748, 5.00646292439135152348096305314, 6.07380284801590675671363852873, 6.94048247529211023854157343618, 7.921959866288433993862715383143, 8.300454644250546298995728078650, 9.009782191031173971561105640243