Properties

Label 2-1920-1.1-c1-0-9
Degree $2$
Conductor $1920$
Sign $1$
Analytic cond. $15.3312$
Root an. cond. $3.91551$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s + 2·7-s + 9-s − 2·11-s + 6·13-s − 15-s − 6·17-s + 6·19-s + 2·21-s − 2·23-s + 25-s + 27-s + 2·29-s + 4·31-s − 2·33-s − 2·35-s + 10·37-s + 6·39-s − 2·41-s − 8·43-s − 45-s + 6·47-s − 3·49-s − 6·51-s + 6·53-s + 2·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s + 0.755·7-s + 1/3·9-s − 0.603·11-s + 1.66·13-s − 0.258·15-s − 1.45·17-s + 1.37·19-s + 0.436·21-s − 0.417·23-s + 1/5·25-s + 0.192·27-s + 0.371·29-s + 0.718·31-s − 0.348·33-s − 0.338·35-s + 1.64·37-s + 0.960·39-s − 0.312·41-s − 1.21·43-s − 0.149·45-s + 0.875·47-s − 3/7·49-s − 0.840·51-s + 0.824·53-s + 0.269·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1920\)    =    \(2^{7} \cdot 3 \cdot 5\)
Sign: $1$
Analytic conductor: \(15.3312\)
Root analytic conductor: \(3.91551\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1920,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.286967511\)
\(L(\frac12)\) \(\approx\) \(2.286967511\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
good7 \( 1 - 2 T + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 - 6 T + p T^{2} \)
23 \( 1 + 2 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 - 10 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 10 T + p T^{2} \)
61 \( 1 + 14 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 + 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.009782191031173971561105640243, −8.300454644250546298995728078650, −7.921959866288433993862715383143, −6.94048247529211023854157343618, −6.07380284801590675671363852873, −5.00646292439135152348096305314, −4.21182094038261900638983310748, −3.34183055256449834784989322034, −2.28231008886779719005891093166, −1.05573399756661793291429489696, 1.05573399756661793291429489696, 2.28231008886779719005891093166, 3.34183055256449834784989322034, 4.21182094038261900638983310748, 5.00646292439135152348096305314, 6.07380284801590675671363852873, 6.94048247529211023854157343618, 7.921959866288433993862715383143, 8.300454644250546298995728078650, 9.009782191031173971561105640243

Graph of the $Z$-function along the critical line