Properties

Label 2-1920-1.1-c1-0-7
Degree $2$
Conductor $1920$
Sign $1$
Analytic cond. $15.3312$
Root an. cond. $3.91551$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 3.12·7-s + 9-s − 2·11-s − 3.12·13-s − 15-s + 7.12·17-s + 3.12·19-s − 3.12·21-s − 3.12·23-s + 25-s − 27-s + 8.24·29-s − 1.12·31-s + 2·33-s + 3.12·35-s + 3.12·37-s + 3.12·39-s − 2·41-s − 10.2·43-s + 45-s + 4.87·47-s + 2.75·49-s − 7.12·51-s + 10·53-s − 2·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 1.18·7-s + 0.333·9-s − 0.603·11-s − 0.866·13-s − 0.258·15-s + 1.72·17-s + 0.716·19-s − 0.681·21-s − 0.651·23-s + 0.200·25-s − 0.192·27-s + 1.53·29-s − 0.201·31-s + 0.348·33-s + 0.527·35-s + 0.513·37-s + 0.500·39-s − 0.312·41-s − 1.56·43-s + 0.149·45-s + 0.711·47-s + 0.393·49-s − 0.997·51-s + 1.37·53-s − 0.269·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1920\)    =    \(2^{7} \cdot 3 \cdot 5\)
Sign: $1$
Analytic conductor: \(15.3312\)
Root analytic conductor: \(3.91551\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1920,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.799119137\)
\(L(\frac12)\) \(\approx\) \(1.799119137\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
good7 \( 1 - 3.12T + 7T^{2} \)
11 \( 1 + 2T + 11T^{2} \)
13 \( 1 + 3.12T + 13T^{2} \)
17 \( 1 - 7.12T + 17T^{2} \)
19 \( 1 - 3.12T + 19T^{2} \)
23 \( 1 + 3.12T + 23T^{2} \)
29 \( 1 - 8.24T + 29T^{2} \)
31 \( 1 + 1.12T + 31T^{2} \)
37 \( 1 - 3.12T + 37T^{2} \)
41 \( 1 + 2T + 41T^{2} \)
43 \( 1 + 10.2T + 43T^{2} \)
47 \( 1 - 4.87T + 47T^{2} \)
53 \( 1 - 10T + 53T^{2} \)
59 \( 1 + 6T + 59T^{2} \)
61 \( 1 + 2T + 61T^{2} \)
67 \( 1 + 10.2T + 67T^{2} \)
71 \( 1 - 8T + 71T^{2} \)
73 \( 1 - 12.2T + 73T^{2} \)
79 \( 1 - 13.1T + 79T^{2} \)
83 \( 1 - 4T + 83T^{2} \)
89 \( 1 + 10T + 89T^{2} \)
97 \( 1 - 10T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.356791594914383908210474172565, −8.143208932893733349944922815051, −7.78009946351911600510911295873, −6.86663253534215083547353363129, −5.78356093226106515295114625768, −5.19060275857337787418167720091, −4.61313099545740155348448603371, −3.25433193910272785317620247166, −2.09642406181533508831481710746, −0.979120241433238298053492313580, 0.979120241433238298053492313580, 2.09642406181533508831481710746, 3.25433193910272785317620247166, 4.61313099545740155348448603371, 5.19060275857337787418167720091, 5.78356093226106515295114625768, 6.86663253534215083547353363129, 7.78009946351911600510911295873, 8.143208932893733349944922815051, 9.356791594914383908210474172565

Graph of the $Z$-function along the critical line