Properties

Label 2-1920-24.11-c1-0-13
Degree $2$
Conductor $1920$
Sign $0.764 - 0.644i$
Analytic cond. $15.3312$
Root an. cond. $3.91551$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.72 − 0.146i)3-s − 5-s − 1.45i·7-s + (2.95 + 0.505i)9-s + 1.01i·11-s + 3.74i·13-s + (1.72 + 0.146i)15-s − 4.75i·17-s − 2.16·19-s + (−0.212 + 2.50i)21-s − 3.30·23-s + 25-s + (−5.02 − 1.30i)27-s + 3.59·29-s − 2.75i·31-s + ⋯
L(s)  = 1  + (−0.996 − 0.0845i)3-s − 0.447·5-s − 0.548i·7-s + (0.985 + 0.168i)9-s + 0.304i·11-s + 1.03i·13-s + (0.445 + 0.0378i)15-s − 1.15i·17-s − 0.497·19-s + (−0.0463 + 0.546i)21-s − 0.688·23-s + 0.200·25-s + (−0.967 − 0.251i)27-s + 0.667·29-s − 0.494i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.764 - 0.644i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.764 - 0.644i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1920\)    =    \(2^{7} \cdot 3 \cdot 5\)
Sign: $0.764 - 0.644i$
Analytic conductor: \(15.3312\)
Root analytic conductor: \(3.91551\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1920} (191, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1920,\ (\ :1/2),\ 0.764 - 0.644i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8768793371\)
\(L(\frac12)\) \(\approx\) \(0.8768793371\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (1.72 + 0.146i)T \)
5 \( 1 + T \)
good7 \( 1 + 1.45iT - 7T^{2} \)
11 \( 1 - 1.01iT - 11T^{2} \)
13 \( 1 - 3.74iT - 13T^{2} \)
17 \( 1 + 4.75iT - 17T^{2} \)
19 \( 1 + 2.16T + 19T^{2} \)
23 \( 1 + 3.30T + 23T^{2} \)
29 \( 1 - 3.59T + 29T^{2} \)
31 \( 1 + 2.75iT - 31T^{2} \)
37 \( 1 - 6.06iT - 37T^{2} \)
41 \( 1 - 7.32iT - 41T^{2} \)
43 \( 1 + 0.0374T + 43T^{2} \)
47 \( 1 + 5.62T + 47T^{2} \)
53 \( 1 + 4.31T + 53T^{2} \)
59 \( 1 + 11.9iT - 59T^{2} \)
61 \( 1 - 5.30iT - 61T^{2} \)
67 \( 1 - 8.03T + 67T^{2} \)
71 \( 1 - 12.4T + 71T^{2} \)
73 \( 1 - 10.3T + 73T^{2} \)
79 \( 1 - 11.3iT - 79T^{2} \)
83 \( 1 - 11.1iT - 83T^{2} \)
89 \( 1 - 6.31iT - 89T^{2} \)
97 \( 1 - 9.48T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.625120471078868112492178040323, −8.361421122958981301545865184201, −7.59275626654194638851320188715, −6.75597741116184652687847477353, −6.37161980451479979261936717869, −5.06197977360274495132442149059, −4.53868363937306032404110546261, −3.68570043232716847730211354052, −2.19149991277073377018551821906, −0.870462147875926255756508244364, 0.50350524572257176345826306412, 1.97132099650509749959199006976, 3.37866997246513869966991488404, 4.22579450370266115154599743584, 5.22136573083537762454762280792, 5.89240149227160005637571689414, 6.54365499924677739877191881245, 7.57479355186190687122351555826, 8.289183050619146895635689944702, 9.059755785397804781880024615649

Graph of the $Z$-function along the critical line