L(s) = 1 | + (−1.72 − 0.146i)3-s − 5-s − 1.45i·7-s + (2.95 + 0.505i)9-s + 1.01i·11-s + 3.74i·13-s + (1.72 + 0.146i)15-s − 4.75i·17-s − 2.16·19-s + (−0.212 + 2.50i)21-s − 3.30·23-s + 25-s + (−5.02 − 1.30i)27-s + 3.59·29-s − 2.75i·31-s + ⋯ |
L(s) = 1 | + (−0.996 − 0.0845i)3-s − 0.447·5-s − 0.548i·7-s + (0.985 + 0.168i)9-s + 0.304i·11-s + 1.03i·13-s + (0.445 + 0.0378i)15-s − 1.15i·17-s − 0.497·19-s + (−0.0463 + 0.546i)21-s − 0.688·23-s + 0.200·25-s + (−0.967 − 0.251i)27-s + 0.667·29-s − 0.494i·31-s + ⋯ |
Λ(s)=(=(1920s/2ΓC(s)L(s)(0.764−0.644i)Λ(2−s)
Λ(s)=(=(1920s/2ΓC(s+1/2)L(s)(0.764−0.644i)Λ(1−s)
Degree: |
2 |
Conductor: |
1920
= 27⋅3⋅5
|
Sign: |
0.764−0.644i
|
Analytic conductor: |
15.3312 |
Root analytic conductor: |
3.91551 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1920(191,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1920, ( :1/2), 0.764−0.644i)
|
Particular Values
L(1) |
≈ |
0.8768793371 |
L(21) |
≈ |
0.8768793371 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(1.72+0.146i)T |
| 5 | 1+T |
good | 7 | 1+1.45iT−7T2 |
| 11 | 1−1.01iT−11T2 |
| 13 | 1−3.74iT−13T2 |
| 17 | 1+4.75iT−17T2 |
| 19 | 1+2.16T+19T2 |
| 23 | 1+3.30T+23T2 |
| 29 | 1−3.59T+29T2 |
| 31 | 1+2.75iT−31T2 |
| 37 | 1−6.06iT−37T2 |
| 41 | 1−7.32iT−41T2 |
| 43 | 1+0.0374T+43T2 |
| 47 | 1+5.62T+47T2 |
| 53 | 1+4.31T+53T2 |
| 59 | 1+11.9iT−59T2 |
| 61 | 1−5.30iT−61T2 |
| 67 | 1−8.03T+67T2 |
| 71 | 1−12.4T+71T2 |
| 73 | 1−10.3T+73T2 |
| 79 | 1−11.3iT−79T2 |
| 83 | 1−11.1iT−83T2 |
| 89 | 1−6.31iT−89T2 |
| 97 | 1−9.48T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.625120471078868112492178040323, −8.361421122958981301545865184201, −7.59275626654194638851320188715, −6.75597741116184652687847477353, −6.37161980451479979261936717869, −5.06197977360274495132442149059, −4.53868363937306032404110546261, −3.68570043232716847730211354052, −2.19149991277073377018551821906, −0.870462147875926255756508244364,
0.50350524572257176345826306412, 1.97132099650509749959199006976, 3.37866997246513869966991488404, 4.22579450370266115154599743584, 5.22136573083537762454762280792, 5.89240149227160005637571689414, 6.54365499924677739877191881245, 7.57479355186190687122351555826, 8.289183050619146895635689944702, 9.059755785397804781880024615649