Properties

Label 2-1920-24.11-c1-0-56
Degree $2$
Conductor $1920$
Sign $-0.998 - 0.0549i$
Analytic cond. $15.3312$
Root an. cond. $3.91551$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.15 − 1.29i)3-s − 5-s − 4.31i·7-s + (−0.329 + 2.98i)9-s − 5.96i·11-s − 4.89i·13-s + (1.15 + 1.29i)15-s − 1.07i·17-s + 4.23·19-s + (−5.56 + 4.98i)21-s + 5.38·23-s + 25-s + (4.22 − 3.02i)27-s + 2.80·29-s − 0.927i·31-s + ⋯
L(s)  = 1  + (−0.667 − 0.744i)3-s − 0.447·5-s − 1.62i·7-s + (−0.109 + 0.993i)9-s − 1.79i·11-s − 1.35i·13-s + (0.298 + 0.333i)15-s − 0.260i·17-s + 0.971·19-s + (−1.21 + 1.08i)21-s + 1.12·23-s + 0.200·25-s + (0.813 − 0.581i)27-s + 0.520·29-s − 0.166i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.998 - 0.0549i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.998 - 0.0549i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1920\)    =    \(2^{7} \cdot 3 \cdot 5\)
Sign: $-0.998 - 0.0549i$
Analytic conductor: \(15.3312\)
Root analytic conductor: \(3.91551\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1920} (191, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1920,\ (\ :1/2),\ -0.998 - 0.0549i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.107709648\)
\(L(\frac12)\) \(\approx\) \(1.107709648\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (1.15 + 1.29i)T \)
5 \( 1 + T \)
good7 \( 1 + 4.31iT - 7T^{2} \)
11 \( 1 + 5.96iT - 11T^{2} \)
13 \( 1 + 4.89iT - 13T^{2} \)
17 \( 1 + 1.07iT - 17T^{2} \)
19 \( 1 - 4.23T + 19T^{2} \)
23 \( 1 - 5.38T + 23T^{2} \)
29 \( 1 - 2.80T + 29T^{2} \)
31 \( 1 + 0.927iT - 31T^{2} \)
37 \( 1 + 8.35iT - 37T^{2} \)
41 \( 1 - 6.50iT - 41T^{2} \)
43 \( 1 + 11.4T + 43T^{2} \)
47 \( 1 - 1.92T + 47T^{2} \)
53 \( 1 - 1.46T + 53T^{2} \)
59 \( 1 - 5.34iT - 59T^{2} \)
61 \( 1 + 5.42iT - 61T^{2} \)
67 \( 1 - 3.47T + 67T^{2} \)
71 \( 1 - 6.47T + 71T^{2} \)
73 \( 1 - 14.4T + 73T^{2} \)
79 \( 1 + 1.91iT - 79T^{2} \)
83 \( 1 - 3.20iT - 83T^{2} \)
89 \( 1 - 0.538iT - 89T^{2} \)
97 \( 1 + 7.78T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.438444563164458425203171451351, −7.920237560113347185591863434972, −7.25152617497526954317850363476, −6.55291367651525928956868394095, −5.59025784724038575562810060172, −4.91258928838860113185593137370, −3.64090648598229838471637178930, −2.97981069460164402230497758233, −1.00637504819323588837761882412, −0.57169716556450281076206799637, 1.68647726734249860658071370337, 2.84953620721357525904735571481, 3.99655578847760957284909093443, 4.95206822273654236458614560625, 5.24584090681045802844229475883, 6.56097965965374842478493857947, 6.93312929107826766886767079999, 8.206490958502265327343273037999, 9.093723899139857710107787048037, 9.491522724393663471160387128067

Graph of the $Z$-function along the critical line