L(s) = 1 | + (−1.15 − 1.29i)3-s − 5-s − 4.31i·7-s + (−0.329 + 2.98i)9-s − 5.96i·11-s − 4.89i·13-s + (1.15 + 1.29i)15-s − 1.07i·17-s + 4.23·19-s + (−5.56 + 4.98i)21-s + 5.38·23-s + 25-s + (4.22 − 3.02i)27-s + 2.80·29-s − 0.927i·31-s + ⋯ |
L(s) = 1 | + (−0.667 − 0.744i)3-s − 0.447·5-s − 1.62i·7-s + (−0.109 + 0.993i)9-s − 1.79i·11-s − 1.35i·13-s + (0.298 + 0.333i)15-s − 0.260i·17-s + 0.971·19-s + (−1.21 + 1.08i)21-s + 1.12·23-s + 0.200·25-s + (0.813 − 0.581i)27-s + 0.520·29-s − 0.166i·31-s + ⋯ |
Λ(s)=(=(1920s/2ΓC(s)L(s)(−0.998−0.0549i)Λ(2−s)
Λ(s)=(=(1920s/2ΓC(s+1/2)L(s)(−0.998−0.0549i)Λ(1−s)
Degree: |
2 |
Conductor: |
1920
= 27⋅3⋅5
|
Sign: |
−0.998−0.0549i
|
Analytic conductor: |
15.3312 |
Root analytic conductor: |
3.91551 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1920(191,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1920, ( :1/2), −0.998−0.0549i)
|
Particular Values
L(1) |
≈ |
1.107709648 |
L(21) |
≈ |
1.107709648 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(1.15+1.29i)T |
| 5 | 1+T |
good | 7 | 1+4.31iT−7T2 |
| 11 | 1+5.96iT−11T2 |
| 13 | 1+4.89iT−13T2 |
| 17 | 1+1.07iT−17T2 |
| 19 | 1−4.23T+19T2 |
| 23 | 1−5.38T+23T2 |
| 29 | 1−2.80T+29T2 |
| 31 | 1+0.927iT−31T2 |
| 37 | 1+8.35iT−37T2 |
| 41 | 1−6.50iT−41T2 |
| 43 | 1+11.4T+43T2 |
| 47 | 1−1.92T+47T2 |
| 53 | 1−1.46T+53T2 |
| 59 | 1−5.34iT−59T2 |
| 61 | 1+5.42iT−61T2 |
| 67 | 1−3.47T+67T2 |
| 71 | 1−6.47T+71T2 |
| 73 | 1−14.4T+73T2 |
| 79 | 1+1.91iT−79T2 |
| 83 | 1−3.20iT−83T2 |
| 89 | 1−0.538iT−89T2 |
| 97 | 1+7.78T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.438444563164458425203171451351, −7.920237560113347185591863434972, −7.25152617497526954317850363476, −6.55291367651525928956868394095, −5.59025784724038575562810060172, −4.91258928838860113185593137370, −3.64090648598229838471637178930, −2.97981069460164402230497758233, −1.00637504819323588837761882412, −0.57169716556450281076206799637,
1.68647726734249860658071370337, 2.84953620721357525904735571481, 3.99655578847760957284909093443, 4.95206822273654236458614560625, 5.24584090681045802844229475883, 6.56097965965374842478493857947, 6.93312929107826766886767079999, 8.206490958502265327343273037999, 9.093723899139857710107787048037, 9.491522724393663471160387128067