L(s) = 1 | + (0.618 + 1.61i)3-s + i·5-s + 2i·7-s + (−2.23 + 2.00i)9-s − 2.47·11-s − 1.23·13-s + (−1.61 + 0.618i)15-s + 0.763i·17-s + 5.23i·19-s + (−3.23 + 1.23i)21-s + 0.472·23-s − 25-s + (−4.61 − 2.38i)27-s − 8.47i·29-s − 4.76i·31-s + ⋯ |
L(s) = 1 | + (0.356 + 0.934i)3-s + 0.447i·5-s + 0.755i·7-s + (−0.745 + 0.666i)9-s − 0.745·11-s − 0.342·13-s + (−0.417 + 0.159i)15-s + 0.185i·17-s + 1.20i·19-s + (−0.706 + 0.269i)21-s + 0.0984·23-s − 0.200·25-s + (−0.888 − 0.458i)27-s − 1.57i·29-s − 0.855i·31-s + ⋯ |
Λ(s)=(=(1920s/2ΓC(s)L(s)(−0.934+0.356i)Λ(2−s)
Λ(s)=(=(1920s/2ΓC(s+1/2)L(s)(−0.934+0.356i)Λ(1−s)
Degree: |
2 |
Conductor: |
1920
= 27⋅3⋅5
|
Sign: |
−0.934+0.356i
|
Analytic conductor: |
15.3312 |
Root analytic conductor: |
3.91551 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1920(1151,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1920, ( :1/2), −0.934+0.356i)
|
Particular Values
L(1) |
≈ |
0.9422907736 |
L(21) |
≈ |
0.9422907736 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−0.618−1.61i)T |
| 5 | 1−iT |
good | 7 | 1−2iT−7T2 |
| 11 | 1+2.47T+11T2 |
| 13 | 1+1.23T+13T2 |
| 17 | 1−0.763iT−17T2 |
| 19 | 1−5.23iT−19T2 |
| 23 | 1−0.472T+23T2 |
| 29 | 1+8.47iT−29T2 |
| 31 | 1+4.76iT−31T2 |
| 37 | 1+7.70T+37T2 |
| 41 | 1−1.52iT−41T2 |
| 43 | 1−9.70iT−43T2 |
| 47 | 1−4.47T+47T2 |
| 53 | 1+4.47iT−53T2 |
| 59 | 1+6.47T+59T2 |
| 61 | 1+12.4T+61T2 |
| 67 | 1−11.2iT−67T2 |
| 71 | 1−4T+71T2 |
| 73 | 1+0.472T+73T2 |
| 79 | 1+8.18iT−79T2 |
| 83 | 1−11.7T+83T2 |
| 89 | 1+1.52iT−89T2 |
| 97 | 1+12.4T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.731013252674235107224384292080, −8.936021981826733656648280736208, −8.069794335266073431637470839999, −7.60877675813312021160365898275, −6.20289007885092285986903233434, −5.64609920965876104981226597546, −4.73109099786135824089141930353, −3.81462981556797426286736285475, −2.86556133120541789345981876709, −2.10627793849199155826054872299,
0.30949667441041139373548064271, 1.50540833196602630401450582519, 2.66240892412814673663876096987, 3.56218470095438494251460000964, 4.81451981152769045946451468919, 5.47071565102309374667598200922, 6.71450112736747976007333838852, 7.19919967409669767220143278140, 7.85505679417149756991644231506, 8.833784407893177634438954918430