L(s) = 1 | + (0.707 + 0.707i)3-s + (2 − i)5-s + (−2 + 2i)7-s + 1.00i·9-s − 4.82i·11-s + (4.41 − 4.41i)13-s + (2.12 + 0.707i)15-s + (2.41 + 2.41i)17-s − 2.82·21-s + (−4.82 − 4.82i)23-s + (3 − 4i)25-s + (−0.707 + 0.707i)27-s + 5.65i·29-s − 8.82i·31-s + (3.41 − 3.41i)33-s + ⋯ |
L(s) = 1 | + (0.408 + 0.408i)3-s + (0.894 − 0.447i)5-s + (−0.755 + 0.755i)7-s + 0.333i·9-s − 1.45i·11-s + (1.22 − 1.22i)13-s + (0.547 + 0.182i)15-s + (0.585 + 0.585i)17-s − 0.617·21-s + (−1.00 − 1.00i)23-s + (0.600 − 0.800i)25-s + (−0.136 + 0.136i)27-s + 1.05i·29-s − 1.58i·31-s + (0.594 − 0.594i)33-s + ⋯ |
Λ(s)=(=(1920s/2ΓC(s)L(s)(0.850+0.525i)Λ(2−s)
Λ(s)=(=(1920s/2ΓC(s+1/2)L(s)(0.850+0.525i)Λ(1−s)
Degree: |
2 |
Conductor: |
1920
= 27⋅3⋅5
|
Sign: |
0.850+0.525i
|
Analytic conductor: |
15.3312 |
Root analytic conductor: |
3.91551 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1920(127,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1920, ( :1/2), 0.850+0.525i)
|
Particular Values
L(1) |
≈ |
2.243247678 |
L(21) |
≈ |
2.243247678 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−0.707−0.707i)T |
| 5 | 1+(−2+i)T |
good | 7 | 1+(2−2i)T−7iT2 |
| 11 | 1+4.82iT−11T2 |
| 13 | 1+(−4.41+4.41i)T−13iT2 |
| 17 | 1+(−2.41−2.41i)T+17iT2 |
| 19 | 1+19T2 |
| 23 | 1+(4.82+4.82i)T+23iT2 |
| 29 | 1−5.65iT−29T2 |
| 31 | 1+8.82iT−31T2 |
| 37 | 1+(6.07+6.07i)T+37iT2 |
| 41 | 1−6.82T+41T2 |
| 43 | 1+(−3.17−3.17i)T+43iT2 |
| 47 | 1+(2.82−2.82i)T−47iT2 |
| 53 | 1+(−0.171+0.171i)T−53iT2 |
| 59 | 1−8.82T+59T2 |
| 61 | 1−8.48T+61T2 |
| 67 | 1+(−4.82+4.82i)T−67iT2 |
| 71 | 1+2.34iT−71T2 |
| 73 | 1+(7.48−7.48i)T−73iT2 |
| 79 | 1−4.82T+79T2 |
| 83 | 1+(−5.17−5.17i)T+83iT2 |
| 89 | 1+12.4iT−89T2 |
| 97 | 1+(−10.6−10.6i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.048206804871633233510325596645, −8.494336545987179775272165671143, −7.961069168951368303025836288269, −6.37324679981544697867096924300, −5.83647083271117622003369209966, −5.44942128813725968819610734156, −3.96338357931677975704060342641, −3.21016238693102485309374361947, −2.32531473344134049623209543101, −0.830082995303393776179049750998,
1.37658194746318917254880932753, 2.19438948224497527073737064795, 3.39743269108983027259656642156, 4.13337577898750993258042309792, 5.35614084928178554928463384249, 6.39302160507053714615578769583, 6.88003577587026954647290035646, 7.45658006064752160132972859511, 8.572244712993930293014300455666, 9.479339230638994785242084689248