Properties

Label 2-1920-20.7-c1-0-34
Degree 22
Conductor 19201920
Sign 0.850+0.525i0.850 + 0.525i
Analytic cond. 15.331215.3312
Root an. cond. 3.915513.91551
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.707 + 0.707i)3-s + (2 − i)5-s + (−2 + 2i)7-s + 1.00i·9-s − 4.82i·11-s + (4.41 − 4.41i)13-s + (2.12 + 0.707i)15-s + (2.41 + 2.41i)17-s − 2.82·21-s + (−4.82 − 4.82i)23-s + (3 − 4i)25-s + (−0.707 + 0.707i)27-s + 5.65i·29-s − 8.82i·31-s + (3.41 − 3.41i)33-s + ⋯
L(s)  = 1  + (0.408 + 0.408i)3-s + (0.894 − 0.447i)5-s + (−0.755 + 0.755i)7-s + 0.333i·9-s − 1.45i·11-s + (1.22 − 1.22i)13-s + (0.547 + 0.182i)15-s + (0.585 + 0.585i)17-s − 0.617·21-s + (−1.00 − 1.00i)23-s + (0.600 − 0.800i)25-s + (−0.136 + 0.136i)27-s + 1.05i·29-s − 1.58i·31-s + (0.594 − 0.594i)33-s + ⋯

Functional equation

Λ(s)=(1920s/2ΓC(s)L(s)=((0.850+0.525i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.850 + 0.525i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(1920s/2ΓC(s+1/2)L(s)=((0.850+0.525i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.850 + 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 19201920    =    27352^{7} \cdot 3 \cdot 5
Sign: 0.850+0.525i0.850 + 0.525i
Analytic conductor: 15.331215.3312
Root analytic conductor: 3.915513.91551
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ1920(127,)\chi_{1920} (127, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 1920, ( :1/2), 0.850+0.525i)(2,\ 1920,\ (\ :1/2),\ 0.850 + 0.525i)

Particular Values

L(1)L(1) \approx 2.2432476782.243247678
L(12)L(\frac12) \approx 2.2432476782.243247678
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1+(0.7070.707i)T 1 + (-0.707 - 0.707i)T
5 1+(2+i)T 1 + (-2 + i)T
good7 1+(22i)T7iT2 1 + (2 - 2i)T - 7iT^{2}
11 1+4.82iT11T2 1 + 4.82iT - 11T^{2}
13 1+(4.41+4.41i)T13iT2 1 + (-4.41 + 4.41i)T - 13iT^{2}
17 1+(2.412.41i)T+17iT2 1 + (-2.41 - 2.41i)T + 17iT^{2}
19 1+19T2 1 + 19T^{2}
23 1+(4.82+4.82i)T+23iT2 1 + (4.82 + 4.82i)T + 23iT^{2}
29 15.65iT29T2 1 - 5.65iT - 29T^{2}
31 1+8.82iT31T2 1 + 8.82iT - 31T^{2}
37 1+(6.07+6.07i)T+37iT2 1 + (6.07 + 6.07i)T + 37iT^{2}
41 16.82T+41T2 1 - 6.82T + 41T^{2}
43 1+(3.173.17i)T+43iT2 1 + (-3.17 - 3.17i)T + 43iT^{2}
47 1+(2.822.82i)T47iT2 1 + (2.82 - 2.82i)T - 47iT^{2}
53 1+(0.171+0.171i)T53iT2 1 + (-0.171 + 0.171i)T - 53iT^{2}
59 18.82T+59T2 1 - 8.82T + 59T^{2}
61 18.48T+61T2 1 - 8.48T + 61T^{2}
67 1+(4.82+4.82i)T67iT2 1 + (-4.82 + 4.82i)T - 67iT^{2}
71 1+2.34iT71T2 1 + 2.34iT - 71T^{2}
73 1+(7.487.48i)T73iT2 1 + (7.48 - 7.48i)T - 73iT^{2}
79 14.82T+79T2 1 - 4.82T + 79T^{2}
83 1+(5.175.17i)T+83iT2 1 + (-5.17 - 5.17i)T + 83iT^{2}
89 1+12.4iT89T2 1 + 12.4iT - 89T^{2}
97 1+(10.610.6i)T+97iT2 1 + (-10.6 - 10.6i)T + 97iT^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.048206804871633233510325596645, −8.494336545987179775272165671143, −7.961069168951368303025836288269, −6.37324679981544697867096924300, −5.83647083271117622003369209966, −5.44942128813725968819610734156, −3.96338357931677975704060342641, −3.21016238693102485309374361947, −2.32531473344134049623209543101, −0.830082995303393776179049750998, 1.37658194746318917254880932753, 2.19438948224497527073737064795, 3.39743269108983027259656642156, 4.13337577898750993258042309792, 5.35614084928178554928463384249, 6.39302160507053714615578769583, 6.88003577587026954647290035646, 7.45658006064752160132972859511, 8.572244712993930293014300455666, 9.479339230638994785242084689248

Graph of the ZZ-function along the critical line