L(s) = 1 | + (0.707 + 0.707i)3-s + (2 − i)5-s + (−2 + 2i)7-s + 1.00i·9-s − 4.82i·11-s + (4.41 − 4.41i)13-s + (2.12 + 0.707i)15-s + (2.41 + 2.41i)17-s − 2.82·21-s + (−4.82 − 4.82i)23-s + (3 − 4i)25-s + (−0.707 + 0.707i)27-s + 5.65i·29-s − 8.82i·31-s + (3.41 − 3.41i)33-s + ⋯ |
L(s) = 1 | + (0.408 + 0.408i)3-s + (0.894 − 0.447i)5-s + (−0.755 + 0.755i)7-s + 0.333i·9-s − 1.45i·11-s + (1.22 − 1.22i)13-s + (0.547 + 0.182i)15-s + (0.585 + 0.585i)17-s − 0.617·21-s + (−1.00 − 1.00i)23-s + (0.600 − 0.800i)25-s + (−0.136 + 0.136i)27-s + 1.05i·29-s − 1.58i·31-s + (0.594 − 0.594i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.850 + 0.525i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.850 + 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.243247678\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.243247678\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.707 - 0.707i)T \) |
| 5 | \( 1 + (-2 + i)T \) |
good | 7 | \( 1 + (2 - 2i)T - 7iT^{2} \) |
| 11 | \( 1 + 4.82iT - 11T^{2} \) |
| 13 | \( 1 + (-4.41 + 4.41i)T - 13iT^{2} \) |
| 17 | \( 1 + (-2.41 - 2.41i)T + 17iT^{2} \) |
| 19 | \( 1 + 19T^{2} \) |
| 23 | \( 1 + (4.82 + 4.82i)T + 23iT^{2} \) |
| 29 | \( 1 - 5.65iT - 29T^{2} \) |
| 31 | \( 1 + 8.82iT - 31T^{2} \) |
| 37 | \( 1 + (6.07 + 6.07i)T + 37iT^{2} \) |
| 41 | \( 1 - 6.82T + 41T^{2} \) |
| 43 | \( 1 + (-3.17 - 3.17i)T + 43iT^{2} \) |
| 47 | \( 1 + (2.82 - 2.82i)T - 47iT^{2} \) |
| 53 | \( 1 + (-0.171 + 0.171i)T - 53iT^{2} \) |
| 59 | \( 1 - 8.82T + 59T^{2} \) |
| 61 | \( 1 - 8.48T + 61T^{2} \) |
| 67 | \( 1 + (-4.82 + 4.82i)T - 67iT^{2} \) |
| 71 | \( 1 + 2.34iT - 71T^{2} \) |
| 73 | \( 1 + (7.48 - 7.48i)T - 73iT^{2} \) |
| 79 | \( 1 - 4.82T + 79T^{2} \) |
| 83 | \( 1 + (-5.17 - 5.17i)T + 83iT^{2} \) |
| 89 | \( 1 + 12.4iT - 89T^{2} \) |
| 97 | \( 1 + (-10.6 - 10.6i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.048206804871633233510325596645, −8.494336545987179775272165671143, −7.961069168951368303025836288269, −6.37324679981544697867096924300, −5.83647083271117622003369209966, −5.44942128813725968819610734156, −3.96338357931677975704060342641, −3.21016238693102485309374361947, −2.32531473344134049623209543101, −0.830082995303393776179049750998,
1.37658194746318917254880932753, 2.19438948224497527073737064795, 3.39743269108983027259656642156, 4.13337577898750993258042309792, 5.35614084928178554928463384249, 6.39302160507053714615578769583, 6.88003577587026954647290035646, 7.45658006064752160132972859511, 8.572244712993930293014300455666, 9.479339230638994785242084689248