L(s) = 1 | + 3-s + (2.15 + 0.609i)5-s + (−0.566 − 0.566i)7-s + 9-s + (3.64 − 3.64i)11-s − 2.74i·13-s + (2.15 + 0.609i)15-s + (2.08 + 2.08i)17-s + (−5.79 + 5.79i)19-s + (−0.566 − 0.566i)21-s + (4.28 − 4.28i)23-s + (4.25 + 2.62i)25-s + 27-s + (2.63 + 2.63i)29-s − 8.10i·31-s + ⋯ |
L(s) = 1 | + 0.577·3-s + (0.962 + 0.272i)5-s + (−0.214 − 0.214i)7-s + 0.333·9-s + (1.09 − 1.09i)11-s − 0.760i·13-s + (0.555 + 0.157i)15-s + (0.505 + 0.505i)17-s + (−1.32 + 1.32i)19-s + (−0.123 − 0.123i)21-s + (0.892 − 0.892i)23-s + (0.851 + 0.524i)25-s + 0.192·27-s + (0.489 + 0.489i)29-s − 1.45i·31-s + ⋯ |
Λ(s)=(=(1920s/2ΓC(s)L(s)(0.937+0.348i)Λ(2−s)
Λ(s)=(=(1920s/2ΓC(s+1/2)L(s)(0.937+0.348i)Λ(1−s)
Degree: |
2 |
Conductor: |
1920
= 27⋅3⋅5
|
Sign: |
0.937+0.348i
|
Analytic conductor: |
15.3312 |
Root analytic conductor: |
3.91551 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1920(1567,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1920, ( :1/2), 0.937+0.348i)
|
Particular Values
L(1) |
≈ |
2.738710471 |
L(21) |
≈ |
2.738710471 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 5 | 1+(−2.15−0.609i)T |
good | 7 | 1+(0.566+0.566i)T+7iT2 |
| 11 | 1+(−3.64+3.64i)T−11iT2 |
| 13 | 1+2.74iT−13T2 |
| 17 | 1+(−2.08−2.08i)T+17iT2 |
| 19 | 1+(5.79−5.79i)T−19iT2 |
| 23 | 1+(−4.28+4.28i)T−23iT2 |
| 29 | 1+(−2.63−2.63i)T+29iT2 |
| 31 | 1+8.10iT−31T2 |
| 37 | 1−2.28iT−37T2 |
| 41 | 1+2.27iT−41T2 |
| 43 | 1+3.06iT−43T2 |
| 47 | 1+(1.80−1.80i)T−47iT2 |
| 53 | 1+6.32T+53T2 |
| 59 | 1+(5.56+5.56i)T+59iT2 |
| 61 | 1+(4.82−4.82i)T−61iT2 |
| 67 | 1−3.34iT−67T2 |
| 71 | 1−2.81T+71T2 |
| 73 | 1+(−10.7−10.7i)T+73iT2 |
| 79 | 1−12.1T+79T2 |
| 83 | 1+1.97T+83T2 |
| 89 | 1−10.0T+89T2 |
| 97 | 1+(1.02+1.02i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.071671638405057761532791792606, −8.490681486967995319015040976737, −7.75212165753208838337746306935, −6.40871990996597046166700143110, −6.31719265364501913531784685201, −5.22459052811244121994563755050, −3.94304474120578797039616313244, −3.28038950991628692764715404153, −2.21408646170953087560274327144, −1.06944998434389685897470673899,
1.36521505059875924075895079591, 2.21741027652600697184903881549, 3.22288506160862634998887369400, 4.50622214861858612013395938425, 4.96237969562876782091896895462, 6.37578972967972955005246509918, 6.70879647154145302141591820547, 7.63264412738571025222826742588, 8.881663628920254533601197892258, 9.183019396545750948990456086384