L(s) = 1 | + 3-s + (2.15 + 0.609i)5-s + (−0.566 − 0.566i)7-s + 9-s + (3.64 − 3.64i)11-s − 2.74i·13-s + (2.15 + 0.609i)15-s + (2.08 + 2.08i)17-s + (−5.79 + 5.79i)19-s + (−0.566 − 0.566i)21-s + (4.28 − 4.28i)23-s + (4.25 + 2.62i)25-s + 27-s + (2.63 + 2.63i)29-s − 8.10i·31-s + ⋯ |
L(s) = 1 | + 0.577·3-s + (0.962 + 0.272i)5-s + (−0.214 − 0.214i)7-s + 0.333·9-s + (1.09 − 1.09i)11-s − 0.760i·13-s + (0.555 + 0.157i)15-s + (0.505 + 0.505i)17-s + (−1.32 + 1.32i)19-s + (−0.123 − 0.123i)21-s + (0.892 − 0.892i)23-s + (0.851 + 0.524i)25-s + 0.192·27-s + (0.489 + 0.489i)29-s − 1.45i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.937 + 0.348i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.937 + 0.348i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.738710471\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.738710471\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 + (-2.15 - 0.609i)T \) |
good | 7 | \( 1 + (0.566 + 0.566i)T + 7iT^{2} \) |
| 11 | \( 1 + (-3.64 + 3.64i)T - 11iT^{2} \) |
| 13 | \( 1 + 2.74iT - 13T^{2} \) |
| 17 | \( 1 + (-2.08 - 2.08i)T + 17iT^{2} \) |
| 19 | \( 1 + (5.79 - 5.79i)T - 19iT^{2} \) |
| 23 | \( 1 + (-4.28 + 4.28i)T - 23iT^{2} \) |
| 29 | \( 1 + (-2.63 - 2.63i)T + 29iT^{2} \) |
| 31 | \( 1 + 8.10iT - 31T^{2} \) |
| 37 | \( 1 - 2.28iT - 37T^{2} \) |
| 41 | \( 1 + 2.27iT - 41T^{2} \) |
| 43 | \( 1 + 3.06iT - 43T^{2} \) |
| 47 | \( 1 + (1.80 - 1.80i)T - 47iT^{2} \) |
| 53 | \( 1 + 6.32T + 53T^{2} \) |
| 59 | \( 1 + (5.56 + 5.56i)T + 59iT^{2} \) |
| 61 | \( 1 + (4.82 - 4.82i)T - 61iT^{2} \) |
| 67 | \( 1 - 3.34iT - 67T^{2} \) |
| 71 | \( 1 - 2.81T + 71T^{2} \) |
| 73 | \( 1 + (-10.7 - 10.7i)T + 73iT^{2} \) |
| 79 | \( 1 - 12.1T + 79T^{2} \) |
| 83 | \( 1 + 1.97T + 83T^{2} \) |
| 89 | \( 1 - 10.0T + 89T^{2} \) |
| 97 | \( 1 + (1.02 + 1.02i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.071671638405057761532791792606, −8.490681486967995319015040976737, −7.75212165753208838337746306935, −6.40871990996597046166700143110, −6.31719265364501913531784685201, −5.22459052811244121994563755050, −3.94304474120578797039616313244, −3.28038950991628692764715404153, −2.21408646170953087560274327144, −1.06944998434389685897470673899,
1.36521505059875924075895079591, 2.21741027652600697184903881549, 3.22288506160862634998887369400, 4.50622214861858612013395938425, 4.96237969562876782091896895462, 6.37578972967972955005246509918, 6.70879647154145302141591820547, 7.63264412738571025222826742588, 8.881663628920254533601197892258, 9.183019396545750948990456086384