L(s) = 1 | + (0.183 + 1.16i)3-s + (−0.587 − 0.809i)4-s + (−0.987 − 0.156i)7-s + (−0.363 + 0.118i)9-s + (−0.309 − 0.951i)11-s + (0.831 − 0.831i)12-s + (1.44 + 0.734i)13-s + (−0.309 + 0.951i)16-s + (0.550 − 0.280i)17-s − 1.17i·21-s + (0.329 + 0.647i)27-s + (0.453 + 0.891i)28-s + (1.53 − 1.11i)29-s + (1.04 − 0.533i)33-s + (0.309 + 0.224i)36-s + ⋯ |
L(s) = 1 | + (0.183 + 1.16i)3-s + (−0.587 − 0.809i)4-s + (−0.987 − 0.156i)7-s + (−0.363 + 0.118i)9-s + (−0.309 − 0.951i)11-s + (0.831 − 0.831i)12-s + (1.44 + 0.734i)13-s + (−0.309 + 0.951i)16-s + (0.550 − 0.280i)17-s − 1.17i·21-s + (0.329 + 0.647i)27-s + (0.453 + 0.891i)28-s + (1.53 − 1.11i)29-s + (1.04 − 0.533i)33-s + (0.309 + 0.224i)36-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.967 - 0.251i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.967 - 0.251i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.031548533\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.031548533\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 7 | \( 1 + (0.987 + 0.156i)T \) |
| 11 | \( 1 + (0.309 + 0.951i)T \) |
good | 2 | \( 1 + (0.587 + 0.809i)T^{2} \) |
| 3 | \( 1 + (-0.183 - 1.16i)T + (-0.951 + 0.309i)T^{2} \) |
| 13 | \( 1 + (-1.44 - 0.734i)T + (0.587 + 0.809i)T^{2} \) |
| 17 | \( 1 + (-0.550 + 0.280i)T + (0.587 - 0.809i)T^{2} \) |
| 19 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 23 | \( 1 - iT^{2} \) |
| 29 | \( 1 + (-1.53 + 1.11i)T + (0.309 - 0.951i)T^{2} \) |
| 31 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 37 | \( 1 + (0.951 + 0.309i)T^{2} \) |
| 41 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + (-1.87 + 0.297i)T + (0.951 - 0.309i)T^{2} \) |
| 53 | \( 1 + (0.587 + 0.809i)T^{2} \) |
| 59 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 61 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 67 | \( 1 + iT^{2} \) |
| 71 | \( 1 + (0.5 - 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
| 73 | \( 1 + (-0.0966 + 0.610i)T + (-0.951 - 0.309i)T^{2} \) |
| 79 | \( 1 + (0.363 + 1.11i)T + (-0.809 + 0.587i)T^{2} \) |
| 83 | \( 1 + (-0.734 - 1.44i)T + (-0.587 + 0.809i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (1.69 + 0.863i)T + (0.587 + 0.809i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.443159334508494799518591255652, −8.897666624925229082499867629170, −8.250613687903157801972089521622, −6.81318054550359325330323782692, −6.05334407543261826142869956583, −5.43920995621225402588402188897, −4.29525389613520706607504403389, −3.84176914366833370001505620702, −2.86423610079251586881969230934, −1.01104296986437434039257663303,
1.11808705740409454760591044329, 2.57264907200381822954586261456, 3.33882046505694187898958188188, 4.28718325583763428863437718804, 5.47088078741403568386630302409, 6.41365973947871591453077751922, 7.08845433469599609082387155595, 7.80862358698006850634395678406, 8.439505584197656595428839877618, 9.122561426151113875469745106913