L(s) = 1 | + (0.186 − 0.0949i)2-s + (−0.562 + 0.773i)4-s + (−0.156 − 0.987i)7-s + (−0.0639 + 0.403i)8-s + (0.951 + 0.309i)9-s + (0.669 − 0.743i)11-s + (−0.122 − 0.169i)14-s + (−0.269 − 0.828i)16-s + (0.206 − 0.0327i)18-s + (0.0541 − 0.201i)22-s + (−0.575 − 0.575i)23-s + (0.852 + 0.434i)28-s + (1.20 + 0.873i)29-s + (−0.417 − 0.417i)32-s + (−0.773 + 0.562i)36-s + (1.96 − 0.311i)37-s + ⋯ |
L(s) = 1 | + (0.186 − 0.0949i)2-s + (−0.562 + 0.773i)4-s + (−0.156 − 0.987i)7-s + (−0.0639 + 0.403i)8-s + (0.951 + 0.309i)9-s + (0.669 − 0.743i)11-s + (−0.122 − 0.169i)14-s + (−0.269 − 0.828i)16-s + (0.206 − 0.0327i)18-s + (0.0541 − 0.201i)22-s + (−0.575 − 0.575i)23-s + (0.852 + 0.434i)28-s + (1.20 + 0.873i)29-s + (−0.417 − 0.417i)32-s + (−0.773 + 0.562i)36-s + (1.96 − 0.311i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.994 + 0.108i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.994 + 0.108i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.209887579\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.209887579\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 7 | \( 1 + (0.156 + 0.987i)T \) |
| 11 | \( 1 + (-0.669 + 0.743i)T \) |
good | 2 | \( 1 + (-0.186 + 0.0949i)T + (0.587 - 0.809i)T^{2} \) |
| 3 | \( 1 + (-0.951 - 0.309i)T^{2} \) |
| 13 | \( 1 + (0.587 - 0.809i)T^{2} \) |
| 17 | \( 1 + (0.587 + 0.809i)T^{2} \) |
| 19 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 23 | \( 1 + (0.575 + 0.575i)T + iT^{2} \) |
| 29 | \( 1 + (-1.20 - 0.873i)T + (0.309 + 0.951i)T^{2} \) |
| 31 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 37 | \( 1 + (-1.96 + 0.311i)T + (0.951 - 0.309i)T^{2} \) |
| 41 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 43 | \( 1 + (0.946 - 0.946i)T - iT^{2} \) |
| 47 | \( 1 + (0.951 + 0.309i)T^{2} \) |
| 53 | \( 1 + (-1.69 + 0.863i)T + (0.587 - 0.809i)T^{2} \) |
| 59 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 61 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 67 | \( 1 + (-0.294 + 0.294i)T - iT^{2} \) |
| 71 | \( 1 + (-0.413 - 1.27i)T + (-0.809 + 0.587i)T^{2} \) |
| 73 | \( 1 + (-0.951 + 0.309i)T^{2} \) |
| 79 | \( 1 + (-0.128 + 0.395i)T + (-0.809 - 0.587i)T^{2} \) |
| 83 | \( 1 + (-0.587 - 0.809i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (0.587 - 0.809i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.426947575043655650640020045032, −8.445513108987106263110077317140, −7.916935689608912787982867900301, −7.03319831697018757601129626126, −6.38993199763041907961645539929, −5.08659836328243264800190077706, −4.24413358003608574621568552188, −3.77985772540070400292340388078, −2.69553635178027633528427060879, −1.08846533663910260608461259317,
1.27190641335690060489544059500, 2.38192525104131651747149792956, 3.86363065471730022691240025195, 4.49603402824431292703607811425, 5.38654210499195930083753773205, 6.24204735497243606253820778993, 6.78082905234289995421680256092, 7.88825902666989608228646588909, 8.804014403936434352328792652678, 9.626412160647037295876602174796