L(s) = 1 | + (−1.41 − 1.41i)2-s + 3.00i·4-s + (0.707 + 0.707i)7-s + (2.82 − 2.82i)8-s + i·9-s + 11-s − 2.00i·14-s − 5.00·16-s + (1.41 − 1.41i)18-s + (−1.41 − 1.41i)22-s + (−2.12 + 2.12i)28-s + (4.24 + 4.24i)32-s − 3.00·36-s + (−1.41 + 1.41i)43-s + 3.00i·44-s + ⋯ |
L(s) = 1 | + (−1.41 − 1.41i)2-s + 3.00i·4-s + (0.707 + 0.707i)7-s + (2.82 − 2.82i)8-s + i·9-s + 11-s − 2.00i·14-s − 5.00·16-s + (1.41 − 1.41i)18-s + (−1.41 − 1.41i)22-s + (−2.12 + 2.12i)28-s + (4.24 + 4.24i)32-s − 3.00·36-s + (−1.41 + 1.41i)43-s + 3.00i·44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 + 0.229i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 + 0.229i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6230229604\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6230229604\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 7 | \( 1 + (-0.707 - 0.707i)T \) |
| 11 | \( 1 - T \) |
good | 2 | \( 1 + (1.41 + 1.41i)T + iT^{2} \) |
| 3 | \( 1 - iT^{2} \) |
| 13 | \( 1 + iT^{2} \) |
| 17 | \( 1 - iT^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + iT^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + (1.41 - 1.41i)T - iT^{2} \) |
| 47 | \( 1 + iT^{2} \) |
| 53 | \( 1 + iT^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 - 2T + T^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.466097072893608852449598433024, −8.642693658483584119368148854681, −8.196005116483076986038276266437, −7.48312947428695568394587402212, −6.52314639917762303054789340998, −4.99991619880792306691772258842, −4.14746460831026953567807345247, −3.07013639874083411030203053624, −2.12899992147928488391066609538, −1.39271370755344685542508542038,
0.838694198854337221122114038424, 1.81263090442213304471879161873, 3.87387683452179707840371683270, 4.86950945645798910253937650209, 5.75546301668657944797067646070, 6.70660110579733194606867878720, 6.95170553679333115555786964379, 7.932872918786443942064104263771, 8.560043677217384699472335728153, 9.241529737059538645863002968076