Properties

Label 2-1925-1.1-c3-0-266
Degree $2$
Conductor $1925$
Sign $-1$
Analytic cond. $113.578$
Root an. cond. $10.6573$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.24·2-s + 5.49·3-s + 2.53·4-s + 17.8·6-s + 7·7-s − 17.7·8-s + 3.16·9-s − 11·11-s + 13.9·12-s − 35.3·13-s + 22.7·14-s − 77.8·16-s − 40.4·17-s + 10.2·18-s + 118.·19-s + 38.4·21-s − 35.7·22-s + 174.·23-s − 97.4·24-s − 114.·26-s − 130.·27-s + 17.7·28-s − 262.·29-s − 36.1·31-s − 110.·32-s − 60.4·33-s − 131.·34-s + ⋯
L(s)  = 1  + 1.14·2-s + 1.05·3-s + 0.316·4-s + 1.21·6-s + 0.377·7-s − 0.784·8-s + 0.117·9-s − 0.301·11-s + 0.334·12-s − 0.754·13-s + 0.433·14-s − 1.21·16-s − 0.577·17-s + 0.134·18-s + 1.42·19-s + 0.399·21-s − 0.345·22-s + 1.58·23-s − 0.828·24-s − 0.865·26-s − 0.933·27-s + 0.119·28-s − 1.68·29-s − 0.209·31-s − 0.611·32-s − 0.318·33-s − 0.662·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1925 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1925\)    =    \(5^{2} \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(113.578\)
Root analytic conductor: \(10.6573\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1925,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 - 7T \)
11 \( 1 + 11T \)
good2 \( 1 - 3.24T + 8T^{2} \)
3 \( 1 - 5.49T + 27T^{2} \)
13 \( 1 + 35.3T + 2.19e3T^{2} \)
17 \( 1 + 40.4T + 4.91e3T^{2} \)
19 \( 1 - 118.T + 6.85e3T^{2} \)
23 \( 1 - 174.T + 1.21e4T^{2} \)
29 \( 1 + 262.T + 2.43e4T^{2} \)
31 \( 1 + 36.1T + 2.97e4T^{2} \)
37 \( 1 + 19.0T + 5.06e4T^{2} \)
41 \( 1 - 156.T + 6.89e4T^{2} \)
43 \( 1 + 287.T + 7.95e4T^{2} \)
47 \( 1 + 397.T + 1.03e5T^{2} \)
53 \( 1 + 272.T + 1.48e5T^{2} \)
59 \( 1 + 507.T + 2.05e5T^{2} \)
61 \( 1 - 35.5T + 2.26e5T^{2} \)
67 \( 1 + 979.T + 3.00e5T^{2} \)
71 \( 1 - 750.T + 3.57e5T^{2} \)
73 \( 1 + 395.T + 3.89e5T^{2} \)
79 \( 1 + 736.T + 4.93e5T^{2} \)
83 \( 1 + 582.T + 5.71e5T^{2} \)
89 \( 1 + 806.T + 7.04e5T^{2} \)
97 \( 1 - 957.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.466972452228874356355002026185, −7.60144459011480372228230935709, −6.94756822662852838895386423102, −5.70466952102789921708955412297, −5.11328117649201450051913517960, −4.32882645216477692558027505337, −3.24534135518849802573170881736, −2.87902316241498795960511413372, −1.73281192446457696294183096003, 0, 1.73281192446457696294183096003, 2.87902316241498795960511413372, 3.24534135518849802573170881736, 4.32882645216477692558027505337, 5.11328117649201450051913517960, 5.70466952102789921708955412297, 6.94756822662852838895386423102, 7.60144459011480372228230935709, 8.466972452228874356355002026185

Graph of the $Z$-function along the critical line