L(s) = 1 | + 2.04·3-s − 0.163·5-s + 3.50·7-s + 1.18·9-s − 2.69·13-s − 0.335·15-s + 7.57·17-s + 4.61·19-s + 7.16·21-s + 0.706·23-s − 4.97·25-s − 3.70·27-s + 1.02·29-s − 5.39·31-s − 0.573·35-s + 11.5·37-s − 5.51·39-s + 0.280·41-s + 4.31·43-s − 0.194·45-s − 5.82·47-s + 5.25·49-s + 15.5·51-s + 9.87·53-s + 9.45·57-s + 3.09·59-s − 6.93·61-s + ⋯ |
L(s) = 1 | + 1.18·3-s − 0.0732·5-s + 1.32·7-s + 0.396·9-s − 0.747·13-s − 0.0865·15-s + 1.83·17-s + 1.05·19-s + 1.56·21-s + 0.147·23-s − 0.994·25-s − 0.713·27-s + 0.191·29-s − 0.969·31-s − 0.0969·35-s + 1.90·37-s − 0.882·39-s + 0.0438·41-s + 0.657·43-s − 0.0290·45-s − 0.850·47-s + 0.751·49-s + 2.17·51-s + 1.35·53-s + 1.25·57-s + 0.402·59-s − 0.887·61-s + ⋯ |
Λ(s)=(=(1936s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1936s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.092179731 |
L(21) |
≈ |
3.092179731 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1 |
good | 3 | 1−2.04T+3T2 |
| 5 | 1+0.163T+5T2 |
| 7 | 1−3.50T+7T2 |
| 13 | 1+2.69T+13T2 |
| 17 | 1−7.57T+17T2 |
| 19 | 1−4.61T+19T2 |
| 23 | 1−0.706T+23T2 |
| 29 | 1−1.02T+29T2 |
| 31 | 1+5.39T+31T2 |
| 37 | 1−11.5T+37T2 |
| 41 | 1−0.280T+41T2 |
| 43 | 1−4.31T+43T2 |
| 47 | 1+5.82T+47T2 |
| 53 | 1−9.87T+53T2 |
| 59 | 1−3.09T+59T2 |
| 61 | 1+6.93T+61T2 |
| 67 | 1+1.91T+67T2 |
| 71 | 1+12.1T+71T2 |
| 73 | 1−11.3T+73T2 |
| 79 | 1+1.72T+79T2 |
| 83 | 1−4.70T+83T2 |
| 89 | 1−6.31T+89T2 |
| 97 | 1−7.00T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.255412632096169883997497117505, −8.167786562522512224681200743672, −7.78487293444204153358534125159, −7.34927148444945221696381934045, −5.79556690961774165079391688764, −5.15826309875877454726844209689, −4.11812793405040925842758448085, −3.21849600833024890890885982120, −2.31850101459127591054879767248, −1.25448862496615872642083988921,
1.25448862496615872642083988921, 2.31850101459127591054879767248, 3.21849600833024890890885982120, 4.11812793405040925842758448085, 5.15826309875877454726844209689, 5.79556690961774165079391688764, 7.34927148444945221696381934045, 7.78487293444204153358534125159, 8.167786562522512224681200743672, 9.255412632096169883997497117505