L(s) = 1 | + (−0.866 − 0.5i)2-s + (0.5 − 0.866i)3-s + (0.499 + 0.866i)4-s + (−0.866 + 0.499i)6-s + (−0.633 + 0.366i)7-s − 0.999i·8-s + (−0.499 − 0.866i)9-s + (−4.09 − 2.36i)11-s + 0.999·12-s + (−2.59 + 2.5i)13-s + 0.732·14-s + (−0.5 + 0.866i)16-s + (1.13 + 1.96i)17-s + 0.999i·18-s + (−1.09 + 0.633i)19-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (0.288 − 0.499i)3-s + (0.249 + 0.433i)4-s + (−0.353 + 0.204i)6-s + (−0.239 + 0.138i)7-s − 0.353i·8-s + (−0.166 − 0.288i)9-s + (−1.23 − 0.713i)11-s + 0.288·12-s + (−0.720 + 0.693i)13-s + 0.195·14-s + (−0.125 + 0.216i)16-s + (0.275 + 0.476i)17-s + 0.235i·18-s + (−0.251 + 0.145i)19-s + ⋯ |
Λ(s)=(=(1950s/2ΓC(s)L(s)(0.711−0.702i)Λ(2−s)
Λ(s)=(=(1950s/2ΓC(s+1/2)L(s)(0.711−0.702i)Λ(1−s)
Degree: |
2 |
Conductor: |
1950
= 2⋅3⋅52⋅13
|
Sign: |
0.711−0.702i
|
Analytic conductor: |
15.5708 |
Root analytic conductor: |
3.94598 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1950(901,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1950, ( :1/2), 0.711−0.702i)
|
Particular Values
L(1) |
≈ |
0.7941609029 |
L(21) |
≈ |
0.7941609029 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.866+0.5i)T |
| 3 | 1+(−0.5+0.866i)T |
| 5 | 1 |
| 13 | 1+(2.59−2.5i)T |
good | 7 | 1+(0.633−0.366i)T+(3.5−6.06i)T2 |
| 11 | 1+(4.09+2.36i)T+(5.5+9.52i)T2 |
| 17 | 1+(−1.13−1.96i)T+(−8.5+14.7i)T2 |
| 19 | 1+(1.09−0.633i)T+(9.5−16.4i)T2 |
| 23 | 1+(−3.09+5.36i)T+(−11.5−19.9i)T2 |
| 29 | 1+(1.23−2.13i)T+(−14.5−25.1i)T2 |
| 31 | 1−5.46iT−31T2 |
| 37 | 1+(−9.06−5.23i)T+(18.5+32.0i)T2 |
| 41 | 1+(−9.86−5.69i)T+(20.5+35.5i)T2 |
| 43 | 1+(3.83+6.63i)T+(−21.5+37.2i)T2 |
| 47 | 1−8.19iT−47T2 |
| 53 | 1+0.464T+53T2 |
| 59 | 1+(−6.92+4i)T+(29.5−51.0i)T2 |
| 61 | 1+(0.598+1.03i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−9.63−5.56i)T+(33.5+58.0i)T2 |
| 71 | 1+(1.09−0.633i)T+(35.5−61.4i)T2 |
| 73 | 1−9.73iT−73T2 |
| 79 | 1+9.46T+79T2 |
| 83 | 1−10.1iT−83T2 |
| 89 | 1+(−2.19−1.26i)T+(44.5+77.0i)T2 |
| 97 | 1+(5.19−3i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.281476123051157153754284441784, −8.364905483913143251447901853029, −7.999473910311689566613891934275, −7.03416989196933358589694681604, −6.34677380575521993574943930300, −5.32376443054217428520377202082, −4.24027703156403770087322553962, −2.95367496971954104060929628859, −2.46784770139233999295301256328, −1.09577675853303949248725458752,
0.37364629654869154881557387663, 2.19564666206182251916709746146, 2.97652263717091875013959214311, 4.24680890881607784523993358335, 5.20613980985200007037442651216, 5.75631243232626555413781224685, 7.05695829845152019930208743135, 7.64643013507142960323129453040, 8.144409329188613570728642150960, 9.361457837363070875867155167040