Properties

Label 2-1950-13.10-c1-0-19
Degree $2$
Conductor $1950$
Sign $0.947 + 0.319i$
Analytic cond. $15.5708$
Root an. cond. $3.94598$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.866 − 0.5i)2-s + (−0.5 − 0.866i)3-s + (0.499 − 0.866i)4-s + (−0.866 − 0.499i)6-s + (2.42 + 1.40i)7-s − 0.999i·8-s + (−0.499 + 0.866i)9-s + (−0.515 + 0.297i)11-s − 0.999·12-s + (3.43 + 1.10i)13-s + 2.80·14-s + (−0.5 − 0.866i)16-s + (−2.87 + 4.98i)17-s + 0.999i·18-s + (6.59 + 3.80i)19-s + ⋯
L(s)  = 1  + (0.612 − 0.353i)2-s + (−0.288 − 0.499i)3-s + (0.249 − 0.433i)4-s + (−0.353 − 0.204i)6-s + (0.918 + 0.530i)7-s − 0.353i·8-s + (−0.166 + 0.288i)9-s + (−0.155 + 0.0896i)11-s − 0.288·12-s + (0.951 + 0.307i)13-s + 0.749·14-s + (−0.125 − 0.216i)16-s + (−0.697 + 1.20i)17-s + 0.235i·18-s + (1.51 + 0.873i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.947 + 0.319i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.947 + 0.319i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1950\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 13\)
Sign: $0.947 + 0.319i$
Analytic conductor: \(15.5708\)
Root analytic conductor: \(3.94598\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1950} (751, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1950,\ (\ :1/2),\ 0.947 + 0.319i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.620207712\)
\(L(\frac12)\) \(\approx\) \(2.620207712\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.866 + 0.5i)T \)
3 \( 1 + (0.5 + 0.866i)T \)
5 \( 1 \)
13 \( 1 + (-3.43 - 1.10i)T \)
good7 \( 1 + (-2.42 - 1.40i)T + (3.5 + 6.06i)T^{2} \)
11 \( 1 + (0.515 - 0.297i)T + (5.5 - 9.52i)T^{2} \)
17 \( 1 + (2.87 - 4.98i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-6.59 - 3.80i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (2.32 + 4.02i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (-1.26 - 2.18i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 - 6.59iT - 31T^{2} \)
37 \( 1 + (-8.98 + 5.18i)T + (18.5 - 32.0i)T^{2} \)
41 \( 1 + (4.98 - 2.87i)T + (20.5 - 35.5i)T^{2} \)
43 \( 1 + (2.12 - 3.67i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 - 2.89iT - 47T^{2} \)
53 \( 1 - 13.8T + 53T^{2} \)
59 \( 1 + (8.40 + 4.85i)T + (29.5 + 51.0i)T^{2} \)
61 \( 1 + (3.41 - 5.91i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-6.80 + 3.93i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 + (1.11 + 0.642i)T + (35.5 + 61.4i)T^{2} \)
73 \( 1 + 14.5iT - 73T^{2} \)
79 \( 1 - 1.83T + 79T^{2} \)
83 \( 1 + 4.19iT - 83T^{2} \)
89 \( 1 + (-5.24 + 3.02i)T + (44.5 - 77.0i)T^{2} \)
97 \( 1 + (14.6 + 8.45i)T + (48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.018324510401846746900017196204, −8.314609688435680999512780969392, −7.61772901215829808831823477133, −6.49846122549182997848867245344, −5.93795046011935623499869109800, −5.12001314045449301956005604827, −4.28047664071806896838803657037, −3.25075550653484871823735844093, −2.02657231364230006086304625013, −1.29233410078499573078076585713, 0.932841602075847161944805764354, 2.54706469932172769303645308424, 3.61285302622975875708256716749, 4.43881664585588535630497799334, 5.16209141267444260277024912773, 5.80925237181127970481561734298, 6.86434250549553366705564329465, 7.57555104200419177366494834169, 8.290710354066492136038114746560, 9.240950665223724633677192341318

Graph of the $Z$-function along the critical line