L(s) = 1 | + (0.866 − 0.5i)2-s + (−0.5 − 0.866i)3-s + (0.499 − 0.866i)4-s + (−0.866 − 0.499i)6-s + (2.42 + 1.40i)7-s − 0.999i·8-s + (−0.499 + 0.866i)9-s + (−0.515 + 0.297i)11-s − 0.999·12-s + (3.43 + 1.10i)13-s + 2.80·14-s + (−0.5 − 0.866i)16-s + (−2.87 + 4.98i)17-s + 0.999i·18-s + (6.59 + 3.80i)19-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (−0.288 − 0.499i)3-s + (0.249 − 0.433i)4-s + (−0.353 − 0.204i)6-s + (0.918 + 0.530i)7-s − 0.353i·8-s + (−0.166 + 0.288i)9-s + (−0.155 + 0.0896i)11-s − 0.288·12-s + (0.951 + 0.307i)13-s + 0.749·14-s + (−0.125 − 0.216i)16-s + (−0.697 + 1.20i)17-s + 0.235i·18-s + (1.51 + 0.873i)19-s + ⋯ |
Λ(s)=(=(1950s/2ΓC(s)L(s)(0.947+0.319i)Λ(2−s)
Λ(s)=(=(1950s/2ΓC(s+1/2)L(s)(0.947+0.319i)Λ(1−s)
Degree: |
2 |
Conductor: |
1950
= 2⋅3⋅52⋅13
|
Sign: |
0.947+0.319i
|
Analytic conductor: |
15.5708 |
Root analytic conductor: |
3.94598 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1950(751,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1950, ( :1/2), 0.947+0.319i)
|
Particular Values
L(1) |
≈ |
2.620207712 |
L(21) |
≈ |
2.620207712 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.866+0.5i)T |
| 3 | 1+(0.5+0.866i)T |
| 5 | 1 |
| 13 | 1+(−3.43−1.10i)T |
good | 7 | 1+(−2.42−1.40i)T+(3.5+6.06i)T2 |
| 11 | 1+(0.515−0.297i)T+(5.5−9.52i)T2 |
| 17 | 1+(2.87−4.98i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−6.59−3.80i)T+(9.5+16.4i)T2 |
| 23 | 1+(2.32+4.02i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−1.26−2.18i)T+(−14.5+25.1i)T2 |
| 31 | 1−6.59iT−31T2 |
| 37 | 1+(−8.98+5.18i)T+(18.5−32.0i)T2 |
| 41 | 1+(4.98−2.87i)T+(20.5−35.5i)T2 |
| 43 | 1+(2.12−3.67i)T+(−21.5−37.2i)T2 |
| 47 | 1−2.89iT−47T2 |
| 53 | 1−13.8T+53T2 |
| 59 | 1+(8.40+4.85i)T+(29.5+51.0i)T2 |
| 61 | 1+(3.41−5.91i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−6.80+3.93i)T+(33.5−58.0i)T2 |
| 71 | 1+(1.11+0.642i)T+(35.5+61.4i)T2 |
| 73 | 1+14.5iT−73T2 |
| 79 | 1−1.83T+79T2 |
| 83 | 1+4.19iT−83T2 |
| 89 | 1+(−5.24+3.02i)T+(44.5−77.0i)T2 |
| 97 | 1+(14.6+8.45i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.018324510401846746900017196204, −8.314609688435680999512780969392, −7.61772901215829808831823477133, −6.49846122549182997848867245344, −5.93795046011935623499869109800, −5.12001314045449301956005604827, −4.28047664071806896838803657037, −3.25075550653484871823735844093, −2.02657231364230006086304625013, −1.29233410078499573078076585713,
0.932841602075847161944805764354, 2.54706469932172769303645308424, 3.61285302622975875708256716749, 4.43881664585588535630497799334, 5.16209141267444260277024912773, 5.80925237181127970481561734298, 6.86434250549553366705564329465, 7.57555104200419177366494834169, 8.290710354066492136038114746560, 9.240950665223724633677192341318