L(s) = 1 | + (0.145 − 1.40i)2-s + (−0.0665 − 0.0834i)3-s + (−1.95 − 0.408i)4-s + (1.11 − 0.890i)5-s + (−0.127 + 0.0814i)6-s + (−1.34 − 2.27i)7-s + (−0.859 + 2.69i)8-s + (0.665 − 2.91i)9-s + (−1.09 − 1.70i)10-s + (−1.57 + 0.359i)11-s + (0.0961 + 0.190i)12-s + (0.776 − 0.177i)13-s + (−3.40 + 1.55i)14-s + (−0.148 − 0.0339i)15-s + (3.66 + 1.60i)16-s + (1.17 − 2.44i)17-s + ⋯ |
L(s) = 1 | + (0.102 − 0.994i)2-s + (−0.0384 − 0.0481i)3-s + (−0.978 − 0.204i)4-s + (0.499 − 0.398i)5-s + (−0.0518 + 0.0332i)6-s + (−0.507 − 0.861i)7-s + (−0.303 + 0.952i)8-s + (0.221 − 0.971i)9-s + (−0.344 − 0.537i)10-s + (−0.474 + 0.108i)11-s + (0.0277 + 0.0549i)12-s + (0.215 − 0.0491i)13-s + (−0.909 + 0.416i)14-s + (−0.0383 − 0.00875i)15-s + (0.916 + 0.400i)16-s + (0.285 − 0.593i)17-s + ⋯ |
Λ(s)=(=(196s/2ΓC(s)L(s)(−0.676+0.736i)Λ(2−s)
Λ(s)=(=(196s/2ΓC(s+1/2)L(s)(−0.676+0.736i)Λ(1−s)
Degree: |
2 |
Conductor: |
196
= 22⋅72
|
Sign: |
−0.676+0.736i
|
Analytic conductor: |
1.56506 |
Root analytic conductor: |
1.25102 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ196(111,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 196, ( :1/2), −0.676+0.736i)
|
Particular Values
L(1) |
≈ |
0.442063−1.00639i |
L(21) |
≈ |
0.442063−1.00639i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.145+1.40i)T |
| 7 | 1+(1.34+2.27i)T |
good | 3 | 1+(0.0665+0.0834i)T+(−0.667+2.92i)T2 |
| 5 | 1+(−1.11+0.890i)T+(1.11−4.87i)T2 |
| 11 | 1+(1.57−0.359i)T+(9.91−4.77i)T2 |
| 13 | 1+(−0.776+0.177i)T+(11.7−5.64i)T2 |
| 17 | 1+(−1.17+2.44i)T+(−10.5−13.2i)T2 |
| 19 | 1+0.719T+19T2 |
| 23 | 1+(−1.19−2.49i)T+(−14.3+17.9i)T2 |
| 29 | 1+(−3.80−1.83i)T+(18.0+22.6i)T2 |
| 31 | 1−7.03T+31T2 |
| 37 | 1+(−4.28−2.06i)T+(23.0+28.9i)T2 |
| 41 | 1+(0.875−0.697i)T+(9.12−39.9i)T2 |
| 43 | 1+(−4.71−3.75i)T+(9.56+41.9i)T2 |
| 47 | 1+(2.47+10.8i)T+(−42.3+20.3i)T2 |
| 53 | 1+(−2.38+1.14i)T+(33.0−41.4i)T2 |
| 59 | 1+(−8.49+10.6i)T+(−13.1−57.5i)T2 |
| 61 | 1+(4.31−8.95i)T+(−38.0−47.6i)T2 |
| 67 | 1−2.88iT−67T2 |
| 71 | 1+(−5.12−10.6i)T+(−44.2+55.5i)T2 |
| 73 | 1+(12.1+2.76i)T+(65.7+31.6i)T2 |
| 79 | 1−9.74iT−79T2 |
| 83 | 1+(1.87−8.19i)T+(−74.7−36.0i)T2 |
| 89 | 1+(14.2+3.26i)T+(80.1+38.6i)T2 |
| 97 | 1+1.72iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.19310196199863837583436697851, −11.20681652885477815320466327789, −10.00412580571617084446762336462, −9.615646575768828195631721442712, −8.400046244856297833161255978013, −6.91198650816422109500897980087, −5.55690848780836364230990286836, −4.26065452701599219306413351151, −3.03215516838233865046455311716, −1.04710076390748662971430303562,
2.69533899470714895755467944584, 4.51801021622617407363719815332, 5.74466320475959903705797983310, 6.45637380444187991729280989899, 7.80242406009617189118765897568, 8.655491683964041868713238895496, 9.831899126393925475244722937134, 10.61488924170481838937681369093, 12.19551965102831570196847467793, 13.09592876150736419379387827907