L(s) = 1 | + (−1.33 + 0.452i)2-s + (0.470 + 0.589i)3-s + (1.58 − 1.21i)4-s + (0.701 − 0.559i)5-s + (−0.897 − 0.577i)6-s + (0.938 − 2.47i)7-s + (−1.57 + 2.34i)8-s + (0.540 − 2.37i)9-s + (−0.686 + 1.06i)10-s + (0.406 − 0.0927i)11-s + (1.46 + 0.366i)12-s + (0.0704 − 0.0160i)13-s + (−0.137 + 3.73i)14-s + (0.660 + 0.150i)15-s + (1.05 − 3.85i)16-s + (−1.30 + 2.70i)17-s + ⋯ |
L(s) = 1 | + (−0.947 + 0.320i)2-s + (0.271 + 0.340i)3-s + (0.794 − 0.606i)4-s + (0.313 − 0.250i)5-s + (−0.366 − 0.235i)6-s + (0.354 − 0.934i)7-s + (−0.558 + 0.829i)8-s + (0.180 − 0.790i)9-s + (−0.217 + 0.337i)10-s + (0.122 − 0.0279i)11-s + (0.422 + 0.105i)12-s + (0.0195 − 0.00445i)13-s + (−0.0366 + 0.999i)14-s + (0.170 + 0.0389i)15-s + (0.263 − 0.964i)16-s + (−0.316 + 0.656i)17-s + ⋯ |
Λ(s)=(=(196s/2ΓC(s)L(s)(0.994+0.105i)Λ(2−s)
Λ(s)=(=(196s/2ΓC(s+1/2)L(s)(0.994+0.105i)Λ(1−s)
Degree: |
2 |
Conductor: |
196
= 22⋅72
|
Sign: |
0.994+0.105i
|
Analytic conductor: |
1.56506 |
Root analytic conductor: |
1.25102 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ196(111,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 196, ( :1/2), 0.994+0.105i)
|
Particular Values
L(1) |
≈ |
0.947689−0.0499503i |
L(21) |
≈ |
0.947689−0.0499503i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.33−0.452i)T |
| 7 | 1+(−0.938+2.47i)T |
good | 3 | 1+(−0.470−0.589i)T+(−0.667+2.92i)T2 |
| 5 | 1+(−0.701+0.559i)T+(1.11−4.87i)T2 |
| 11 | 1+(−0.406+0.0927i)T+(9.91−4.77i)T2 |
| 13 | 1+(−0.0704+0.0160i)T+(11.7−5.64i)T2 |
| 17 | 1+(1.30−2.70i)T+(−10.5−13.2i)T2 |
| 19 | 1−7.07T+19T2 |
| 23 | 1+(0.339+0.706i)T+(−14.3+17.9i)T2 |
| 29 | 1+(−4.62−2.22i)T+(18.0+22.6i)T2 |
| 31 | 1+2.54T+31T2 |
| 37 | 1+(7.13+3.43i)T+(23.0+28.9i)T2 |
| 41 | 1+(5.37−4.28i)T+(9.12−39.9i)T2 |
| 43 | 1+(3.75+2.99i)T+(9.56+41.9i)T2 |
| 47 | 1+(−0.549−2.40i)T+(−42.3+20.3i)T2 |
| 53 | 1+(5.53−2.66i)T+(33.0−41.4i)T2 |
| 59 | 1+(6.25−7.84i)T+(−13.1−57.5i)T2 |
| 61 | 1+(−5.42+11.2i)T+(−38.0−47.6i)T2 |
| 67 | 1−10.3iT−67T2 |
| 71 | 1+(3.56+7.40i)T+(−44.2+55.5i)T2 |
| 73 | 1+(−11.0−2.52i)T+(65.7+31.6i)T2 |
| 79 | 1−8.93iT−79T2 |
| 83 | 1+(−0.295+1.29i)T+(−74.7−36.0i)T2 |
| 89 | 1+(−3.97−0.906i)T+(80.1+38.6i)T2 |
| 97 | 1−12.4iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.29218153309336310389189110159, −11.22311448185571559134128861453, −10.24526121708785059591448516431, −9.501644299277822864245442122649, −8.604759742936891403882818410644, −7.47693572312119605774933910723, −6.53181380325021164799343397004, −5.13546435365586695112786578327, −3.48527108383320818407154633303, −1.32932671818058325214878930920,
1.84716201218990658252644485916, 2.98861605034068176941400770108, 5.15143408960262151496553532982, 6.60774425712436047843791495798, 7.67624092930279251237976326060, 8.525081729006280288544820939550, 9.519014285474332076490224673123, 10.42945584914771724908050034675, 11.56853693591519731354939829271, 12.17353013544937860850913899319