L(s) = 1 | + (3.04 − 5.26i)3-s + (−9.58 − 16.5i)5-s + (−5 − 8.66i)9-s + (13.2 − 23.0i)11-s − 10.3·13-s − 116.·15-s + (−50.6 + 87.7i)17-s + (−46.8 − 81.1i)19-s + (4.28 + 7.42i)23-s + (−121. + 209. i)25-s + 103.·27-s + 52.3·29-s + (−27.7 + 47.9i)31-s + (−80.8 − 140. i)33-s + (−214. − 371. i)37-s + ⋯ |
L(s) = 1 | + (0.585 − 1.01i)3-s + (−0.857 − 1.48i)5-s + (−0.185 − 0.320i)9-s + (0.364 − 0.630i)11-s − 0.220·13-s − 2.00·15-s + (−0.722 + 1.25i)17-s + (−0.566 − 0.980i)19-s + (0.0388 + 0.0673i)23-s + (−0.969 + 1.67i)25-s + 0.737·27-s + 0.335·29-s + (−0.160 + 0.278i)31-s + (−0.426 − 0.738i)33-s + (−0.951 − 1.64i)37-s + ⋯ |
Λ(s)=(=(196s/2ΓC(s)L(s)(−0.991+0.126i)Λ(4−s)
Λ(s)=(=(196s/2ΓC(s+3/2)L(s)(−0.991+0.126i)Λ(1−s)
Degree: |
2 |
Conductor: |
196
= 22⋅72
|
Sign: |
−0.991+0.126i
|
Analytic conductor: |
11.5643 |
Root analytic conductor: |
3.40064 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ196(165,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 196, ( :3/2), −0.991+0.126i)
|
Particular Values
L(2) |
≈ |
0.0841014−1.32526i |
L(21) |
≈ |
0.0841014−1.32526i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
good | 3 | 1+(−3.04+5.26i)T+(−13.5−23.3i)T2 |
| 5 | 1+(9.58+16.5i)T+(−62.5+108.i)T2 |
| 11 | 1+(−13.2+23.0i)T+(−665.5−1.15e3i)T2 |
| 13 | 1+10.3T+2.19e3T2 |
| 17 | 1+(50.6−87.7i)T+(−2.45e3−4.25e3i)T2 |
| 19 | 1+(46.8+81.1i)T+(−3.42e3+5.94e3i)T2 |
| 23 | 1+(−4.28−7.42i)T+(−6.08e3+1.05e4i)T2 |
| 29 | 1−52.3T+2.43e4T2 |
| 31 | 1+(27.7−47.9i)T+(−1.48e4−2.57e4i)T2 |
| 37 | 1+(214.+371.i)T+(−2.53e4+4.38e4i)T2 |
| 41 | 1−137.T+6.89e4T2 |
| 43 | 1+172T+7.95e4T2 |
| 47 | 1+(24.6+42.6i)T+(−5.19e4+8.99e4i)T2 |
| 53 | 1+(−237.+410.i)T+(−7.44e4−1.28e5i)T2 |
| 59 | 1+(−98.5+170.i)T+(−1.02e5−1.77e5i)T2 |
| 61 | 1+(200.+347.i)T+(−1.13e5+1.96e5i)T2 |
| 67 | 1+(62.7−108.i)T+(−1.50e5−2.60e5i)T2 |
| 71 | 1−788.T+3.57e5T2 |
| 73 | 1+(−302.+523.i)T+(−1.94e5−3.36e5i)T2 |
| 79 | 1+(391.+678.i)T+(−2.46e5+4.26e5i)T2 |
| 83 | 1−339.T+5.71e5T2 |
| 89 | 1+(−255.−443.i)T+(−3.52e5+6.10e5i)T2 |
| 97 | 1−672.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.88029847280773071799838801912, −10.79138802123928277855956213700, −8.998483877564591449168001447467, −8.554584837587603875343612247253, −7.70200789183751556920023823076, −6.54804759597979250091830446839, −4.99180013383635942101988857785, −3.79842680354324784721103833044, −1.91581407004642967892325115095, −0.53431010427785656541803549222,
2.64256447565118468292692028749, 3.67666670266718767960509032568, 4.61284394106216474085501005039, 6.54333274822389427129270429305, 7.37765048366936998595917940608, 8.582114420886776112576849923702, 9.762733666493983781744629246069, 10.41017752248029105218107090781, 11.39189742909800507407235907304, 12.24770254019677880506097192400