L(s) = 1 | + 2·3-s + 5-s + 9-s − 11-s + 3·13-s + 2·15-s + 2·17-s + 5·19-s + 7·23-s + 25-s − 4·27-s − 6·29-s − 4·31-s − 2·33-s − 5·37-s + 6·39-s + 5·41-s + 6·43-s + 45-s + 9·47-s + 4·51-s + 11·53-s − 55-s + 10·57-s − 8·59-s + 12·61-s + 3·65-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 0.447·5-s + 1/3·9-s − 0.301·11-s + 0.832·13-s + 0.516·15-s + 0.485·17-s + 1.14·19-s + 1.45·23-s + 1/5·25-s − 0.769·27-s − 1.11·29-s − 0.718·31-s − 0.348·33-s − 0.821·37-s + 0.960·39-s + 0.780·41-s + 0.914·43-s + 0.149·45-s + 1.31·47-s + 0.560·51-s + 1.51·53-s − 0.134·55-s + 1.32·57-s − 1.04·59-s + 1.53·61-s + 0.372·65-s + ⋯ |
Λ(s)=(=(1960s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1960s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.998419241 |
L(21) |
≈ |
2.998419241 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1−T |
| 7 | 1 |
good | 3 | 1−2T+pT2 |
| 11 | 1+T+pT2 |
| 13 | 1−3T+pT2 |
| 17 | 1−2T+pT2 |
| 19 | 1−5T+pT2 |
| 23 | 1−7T+pT2 |
| 29 | 1+6T+pT2 |
| 31 | 1+4T+pT2 |
| 37 | 1+5T+pT2 |
| 41 | 1−5T+pT2 |
| 43 | 1−6T+pT2 |
| 47 | 1−9T+pT2 |
| 53 | 1−11T+pT2 |
| 59 | 1+8T+pT2 |
| 61 | 1−12T+pT2 |
| 67 | 1+4T+pT2 |
| 71 | 1+4T+pT2 |
| 73 | 1+12T+pT2 |
| 79 | 1−14T+pT2 |
| 83 | 1−4T+pT2 |
| 89 | 1+6T+pT2 |
| 97 | 1+6T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.091732998138559844786811523090, −8.597255807018327695840385730332, −7.58664983209587469841750189347, −7.15183087845906613930192459977, −5.82239473250670380943876399125, −5.31661172074901202674013179149, −3.95097779424508233039643008599, −3.21701786226494141604504472434, −2.39676310674079664374662908188, −1.20655101631795718573335213936,
1.20655101631795718573335213936, 2.39676310674079664374662908188, 3.21701786226494141604504472434, 3.95097779424508233039643008599, 5.31661172074901202674013179149, 5.82239473250670380943876399125, 7.15183087845906613930192459977, 7.58664983209587469841750189347, 8.597255807018327695840385730332, 9.091732998138559844786811523090