Properties

Label 2-1960-1.1-c3-0-33
Degree $2$
Conductor $1960$
Sign $1$
Analytic cond. $115.643$
Root an. cond. $10.7537$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s − 5·5-s − 11·9-s + 36·11-s + 42·13-s + 20·15-s + 110·17-s + 116·19-s + 16·23-s + 25·25-s + 152·27-s + 198·29-s − 240·31-s − 144·33-s − 258·37-s − 168·39-s − 442·41-s − 292·43-s + 55·45-s − 392·47-s − 440·51-s + 142·53-s − 180·55-s − 464·57-s + 348·59-s + 570·61-s − 210·65-s + ⋯
L(s)  = 1  − 0.769·3-s − 0.447·5-s − 0.407·9-s + 0.986·11-s + 0.896·13-s + 0.344·15-s + 1.56·17-s + 1.40·19-s + 0.145·23-s + 1/5·25-s + 1.08·27-s + 1.26·29-s − 1.39·31-s − 0.759·33-s − 1.14·37-s − 0.689·39-s − 1.68·41-s − 1.03·43-s + 0.182·45-s − 1.21·47-s − 1.20·51-s + 0.368·53-s − 0.441·55-s − 1.07·57-s + 0.767·59-s + 1.19·61-s − 0.400·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1960 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1960\)    =    \(2^{3} \cdot 5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(115.643\)
Root analytic conductor: \(10.7537\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1960,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.665507398\)
\(L(\frac12)\) \(\approx\) \(1.665507398\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + p T \)
7 \( 1 \)
good3 \( 1 + 4 T + p^{3} T^{2} \)
11 \( 1 - 36 T + p^{3} T^{2} \)
13 \( 1 - 42 T + p^{3} T^{2} \)
17 \( 1 - 110 T + p^{3} T^{2} \)
19 \( 1 - 116 T + p^{3} T^{2} \)
23 \( 1 - 16 T + p^{3} T^{2} \)
29 \( 1 - 198 T + p^{3} T^{2} \)
31 \( 1 + 240 T + p^{3} T^{2} \)
37 \( 1 + 258 T + p^{3} T^{2} \)
41 \( 1 + 442 T + p^{3} T^{2} \)
43 \( 1 + 292 T + p^{3} T^{2} \)
47 \( 1 + 392 T + p^{3} T^{2} \)
53 \( 1 - 142 T + p^{3} T^{2} \)
59 \( 1 - 348 T + p^{3} T^{2} \)
61 \( 1 - 570 T + p^{3} T^{2} \)
67 \( 1 - 692 T + p^{3} T^{2} \)
71 \( 1 - 168 T + p^{3} T^{2} \)
73 \( 1 - 134 T + p^{3} T^{2} \)
79 \( 1 - 784 T + p^{3} T^{2} \)
83 \( 1 + 564 T + p^{3} T^{2} \)
89 \( 1 + 1034 T + p^{3} T^{2} \)
97 \( 1 - 382 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.677008027035987045813432930499, −8.165182801105838533052664435839, −7.06225859411952504838778602299, −6.50105804295316399635856378201, −5.47998847378264623883021332601, −5.07535682573438079351141878036, −3.64360051930141708120540245663, −3.26956951942213813275790513872, −1.49697776397294957042214310589, −0.67879977302095928445962358631, 0.67879977302095928445962358631, 1.49697776397294957042214310589, 3.26956951942213813275790513872, 3.64360051930141708120540245663, 5.07535682573438079351141878036, 5.47998847378264623883021332601, 6.50105804295316399635856378201, 7.06225859411952504838778602299, 8.165182801105838533052664435839, 8.677008027035987045813432930499

Graph of the $Z$-function along the critical line