L(s) = 1 | − 4·3-s − 5·5-s − 11·9-s + 36·11-s + 42·13-s + 20·15-s + 110·17-s + 116·19-s + 16·23-s + 25·25-s + 152·27-s + 198·29-s − 240·31-s − 144·33-s − 258·37-s − 168·39-s − 442·41-s − 292·43-s + 55·45-s − 392·47-s − 440·51-s + 142·53-s − 180·55-s − 464·57-s + 348·59-s + 570·61-s − 210·65-s + ⋯ |
L(s) = 1 | − 0.769·3-s − 0.447·5-s − 0.407·9-s + 0.986·11-s + 0.896·13-s + 0.344·15-s + 1.56·17-s + 1.40·19-s + 0.145·23-s + 1/5·25-s + 1.08·27-s + 1.26·29-s − 1.39·31-s − 0.759·33-s − 1.14·37-s − 0.689·39-s − 1.68·41-s − 1.03·43-s + 0.182·45-s − 1.21·47-s − 1.20·51-s + 0.368·53-s − 0.441·55-s − 1.07·57-s + 0.767·59-s + 1.19·61-s − 0.400·65-s + ⋯ |
Λ(s)=(=(1960s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1960s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.665507398 |
L(21) |
≈ |
1.665507398 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+pT |
| 7 | 1 |
good | 3 | 1+4T+p3T2 |
| 11 | 1−36T+p3T2 |
| 13 | 1−42T+p3T2 |
| 17 | 1−110T+p3T2 |
| 19 | 1−116T+p3T2 |
| 23 | 1−16T+p3T2 |
| 29 | 1−198T+p3T2 |
| 31 | 1+240T+p3T2 |
| 37 | 1+258T+p3T2 |
| 41 | 1+442T+p3T2 |
| 43 | 1+292T+p3T2 |
| 47 | 1+392T+p3T2 |
| 53 | 1−142T+p3T2 |
| 59 | 1−348T+p3T2 |
| 61 | 1−570T+p3T2 |
| 67 | 1−692T+p3T2 |
| 71 | 1−168T+p3T2 |
| 73 | 1−134T+p3T2 |
| 79 | 1−784T+p3T2 |
| 83 | 1+564T+p3T2 |
| 89 | 1+1034T+p3T2 |
| 97 | 1−382T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.677008027035987045813432930499, −8.165182801105838533052664435839, −7.06225859411952504838778602299, −6.50105804295316399635856378201, −5.47998847378264623883021332601, −5.07535682573438079351141878036, −3.64360051930141708120540245663, −3.26956951942213813275790513872, −1.49697776397294957042214310589, −0.67879977302095928445962358631,
0.67879977302095928445962358631, 1.49697776397294957042214310589, 3.26956951942213813275790513872, 3.64360051930141708120540245663, 5.07535682573438079351141878036, 5.47998847378264623883021332601, 6.50105804295316399635856378201, 7.06225859411952504838778602299, 8.165182801105838533052664435839, 8.677008027035987045813432930499