Properties

Label 2-197-1.1-c11-0-22
Degree $2$
Conductor $197$
Sign $1$
Analytic cond. $151.363$
Root an. cond. $12.3029$
Motivic weight $11$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 72.3·2-s − 558.·3-s + 3.17e3·4-s + 7.09e3·5-s + 4.03e4·6-s − 1.71e4·7-s − 8.18e4·8-s + 1.34e5·9-s − 5.13e5·10-s + 2.11e4·11-s − 1.77e6·12-s + 2.73e5·13-s + 1.24e6·14-s − 3.96e6·15-s − 5.94e5·16-s − 6.68e6·17-s − 9.74e6·18-s − 4.92e6·19-s + 2.25e7·20-s + 9.59e6·21-s − 1.52e6·22-s − 4.17e7·23-s + 4.57e7·24-s + 1.55e6·25-s − 1.97e7·26-s + 2.36e7·27-s − 5.46e7·28-s + ⋯
L(s)  = 1  − 1.59·2-s − 1.32·3-s + 1.55·4-s + 1.01·5-s + 2.12·6-s − 0.386·7-s − 0.883·8-s + 0.761·9-s − 1.62·10-s + 0.0395·11-s − 2.06·12-s + 0.204·13-s + 0.617·14-s − 1.34·15-s − 0.141·16-s − 1.14·17-s − 1.21·18-s − 0.455·19-s + 1.57·20-s + 0.512·21-s − 0.0631·22-s − 1.35·23-s + 1.17·24-s + 0.0318·25-s − 0.326·26-s + 0.317·27-s − 0.600·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 197 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 197 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(197\)
Sign: $1$
Analytic conductor: \(151.363\)
Root analytic conductor: \(12.3029\)
Motivic weight: \(11\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 197,\ (\ :11/2),\ 1)\)

Particular Values

\(L(6)\) \(\approx\) \(0.2719553265\)
\(L(\frac12)\) \(\approx\) \(0.2719553265\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad197 \( 1 + 2.96e11T \)
good2 \( 1 + 72.3T + 2.04e3T^{2} \)
3 \( 1 + 558.T + 1.77e5T^{2} \)
5 \( 1 - 7.09e3T + 4.88e7T^{2} \)
7 \( 1 + 1.71e4T + 1.97e9T^{2} \)
11 \( 1 - 2.11e4T + 2.85e11T^{2} \)
13 \( 1 - 2.73e5T + 1.79e12T^{2} \)
17 \( 1 + 6.68e6T + 3.42e13T^{2} \)
19 \( 1 + 4.92e6T + 1.16e14T^{2} \)
23 \( 1 + 4.17e7T + 9.52e14T^{2} \)
29 \( 1 - 8.40e7T + 1.22e16T^{2} \)
31 \( 1 + 1.59e8T + 2.54e16T^{2} \)
37 \( 1 - 1.36e8T + 1.77e17T^{2} \)
41 \( 1 - 2.79e8T + 5.50e17T^{2} \)
43 \( 1 - 1.72e9T + 9.29e17T^{2} \)
47 \( 1 - 2.09e9T + 2.47e18T^{2} \)
53 \( 1 + 5.01e9T + 9.26e18T^{2} \)
59 \( 1 + 7.29e9T + 3.01e19T^{2} \)
61 \( 1 - 5.90e9T + 4.35e19T^{2} \)
67 \( 1 + 1.81e10T + 1.22e20T^{2} \)
71 \( 1 + 3.13e9T + 2.31e20T^{2} \)
73 \( 1 + 2.76e10T + 3.13e20T^{2} \)
79 \( 1 + 1.97e10T + 7.47e20T^{2} \)
83 \( 1 - 6.91e10T + 1.28e21T^{2} \)
89 \( 1 - 7.27e8T + 2.77e21T^{2} \)
97 \( 1 - 1.08e10T + 7.15e21T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.48431661130150254997692358506, −9.572296386487377769234843202827, −8.815177391523230103409216716645, −7.50994283324308469161014522681, −6.32709769653925462616904119622, −5.98300971281414143903157764164, −4.47782783415096160762944602597, −2.40165834945430271396442720787, −1.45837300604082864565120526554, −0.32759821222603320521478864405, 0.32759821222603320521478864405, 1.45837300604082864565120526554, 2.40165834945430271396442720787, 4.47782783415096160762944602597, 5.98300971281414143903157764164, 6.32709769653925462616904119622, 7.50994283324308469161014522681, 8.815177391523230103409216716645, 9.572296386487377769234843202827, 10.48431661130150254997692358506

Graph of the $Z$-function along the critical line