Properties

Label 2-197-1.1-c11-0-22
Degree 22
Conductor 197197
Sign 11
Analytic cond. 151.363151.363
Root an. cond. 12.302912.3029
Motivic weight 1111
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 72.3·2-s − 558.·3-s + 3.17e3·4-s + 7.09e3·5-s + 4.03e4·6-s − 1.71e4·7-s − 8.18e4·8-s + 1.34e5·9-s − 5.13e5·10-s + 2.11e4·11-s − 1.77e6·12-s + 2.73e5·13-s + 1.24e6·14-s − 3.96e6·15-s − 5.94e5·16-s − 6.68e6·17-s − 9.74e6·18-s − 4.92e6·19-s + 2.25e7·20-s + 9.59e6·21-s − 1.52e6·22-s − 4.17e7·23-s + 4.57e7·24-s + 1.55e6·25-s − 1.97e7·26-s + 2.36e7·27-s − 5.46e7·28-s + ⋯
L(s)  = 1  − 1.59·2-s − 1.32·3-s + 1.55·4-s + 1.01·5-s + 2.12·6-s − 0.386·7-s − 0.883·8-s + 0.761·9-s − 1.62·10-s + 0.0395·11-s − 2.06·12-s + 0.204·13-s + 0.617·14-s − 1.34·15-s − 0.141·16-s − 1.14·17-s − 1.21·18-s − 0.455·19-s + 1.57·20-s + 0.512·21-s − 0.0631·22-s − 1.35·23-s + 1.17·24-s + 0.0318·25-s − 0.326·26-s + 0.317·27-s − 0.600·28-s + ⋯

Functional equation

Λ(s)=(197s/2ΓC(s)L(s)=(Λ(12s)\begin{aligned}\Lambda(s)=\mathstrut & 197 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(12-s) \end{aligned}
Λ(s)=(197s/2ΓC(s+11/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 197 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 197197
Sign: 11
Analytic conductor: 151.363151.363
Root analytic conductor: 12.302912.3029
Motivic weight: 1111
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (2, 197, ( :11/2), 1)(2,\ 197,\ (\ :11/2),\ 1)

Particular Values

L(6)L(6) \approx 0.27195532650.2719553265
L(12)L(\frac12) \approx 0.27195532650.2719553265
L(132)L(\frac{13}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad197 1+2.96e11T 1 + 2.96e11T
good2 1+72.3T+2.04e3T2 1 + 72.3T + 2.04e3T^{2}
3 1+558.T+1.77e5T2 1 + 558.T + 1.77e5T^{2}
5 17.09e3T+4.88e7T2 1 - 7.09e3T + 4.88e7T^{2}
7 1+1.71e4T+1.97e9T2 1 + 1.71e4T + 1.97e9T^{2}
11 12.11e4T+2.85e11T2 1 - 2.11e4T + 2.85e11T^{2}
13 12.73e5T+1.79e12T2 1 - 2.73e5T + 1.79e12T^{2}
17 1+6.68e6T+3.42e13T2 1 + 6.68e6T + 3.42e13T^{2}
19 1+4.92e6T+1.16e14T2 1 + 4.92e6T + 1.16e14T^{2}
23 1+4.17e7T+9.52e14T2 1 + 4.17e7T + 9.52e14T^{2}
29 18.40e7T+1.22e16T2 1 - 8.40e7T + 1.22e16T^{2}
31 1+1.59e8T+2.54e16T2 1 + 1.59e8T + 2.54e16T^{2}
37 11.36e8T+1.77e17T2 1 - 1.36e8T + 1.77e17T^{2}
41 12.79e8T+5.50e17T2 1 - 2.79e8T + 5.50e17T^{2}
43 11.72e9T+9.29e17T2 1 - 1.72e9T + 9.29e17T^{2}
47 12.09e9T+2.47e18T2 1 - 2.09e9T + 2.47e18T^{2}
53 1+5.01e9T+9.26e18T2 1 + 5.01e9T + 9.26e18T^{2}
59 1+7.29e9T+3.01e19T2 1 + 7.29e9T + 3.01e19T^{2}
61 15.90e9T+4.35e19T2 1 - 5.90e9T + 4.35e19T^{2}
67 1+1.81e10T+1.22e20T2 1 + 1.81e10T + 1.22e20T^{2}
71 1+3.13e9T+2.31e20T2 1 + 3.13e9T + 2.31e20T^{2}
73 1+2.76e10T+3.13e20T2 1 + 2.76e10T + 3.13e20T^{2}
79 1+1.97e10T+7.47e20T2 1 + 1.97e10T + 7.47e20T^{2}
83 16.91e10T+1.28e21T2 1 - 6.91e10T + 1.28e21T^{2}
89 17.27e8T+2.77e21T2 1 - 7.27e8T + 2.77e21T^{2}
97 11.08e10T+7.15e21T2 1 - 1.08e10T + 7.15e21T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.48431661130150254997692358506, −9.572296386487377769234843202827, −8.815177391523230103409216716645, −7.50994283324308469161014522681, −6.32709769653925462616904119622, −5.98300971281414143903157764164, −4.47782783415096160762944602597, −2.40165834945430271396442720787, −1.45837300604082864565120526554, −0.32759821222603320521478864405, 0.32759821222603320521478864405, 1.45837300604082864565120526554, 2.40165834945430271396442720787, 4.47782783415096160762944602597, 5.98300971281414143903157764164, 6.32709769653925462616904119622, 7.50994283324308469161014522681, 8.815177391523230103409216716645, 9.572296386487377769234843202827, 10.48431661130150254997692358506

Graph of the ZZ-function along the critical line