Properties

Label 2-197-1.1-c13-0-182
Degree $2$
Conductor $197$
Sign $-1$
Analytic cond. $211.244$
Root an. cond. $14.5342$
Motivic weight $13$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 135.·2-s + 2.21e3·3-s + 1.02e4·4-s + 2.47e4·5-s − 3.00e5·6-s − 3.33e5·7-s − 2.86e5·8-s + 3.29e6·9-s − 3.36e6·10-s + 2.42e6·11-s + 2.27e7·12-s + 1.74e7·13-s + 4.53e7·14-s + 5.46e7·15-s − 4.54e7·16-s − 5.12e6·17-s − 4.47e8·18-s − 2.76e8·19-s + 2.54e8·20-s − 7.37e8·21-s − 3.30e8·22-s + 3.30e8·23-s − 6.33e8·24-s − 6.09e8·25-s − 2.37e9·26-s + 3.74e9·27-s − 3.43e9·28-s + ⋯
L(s)  = 1  − 1.50·2-s + 1.75·3-s + 1.25·4-s + 0.707·5-s − 2.62·6-s − 1.07·7-s − 0.386·8-s + 2.06·9-s − 1.06·10-s + 0.413·11-s + 2.20·12-s + 1.00·13-s + 1.61·14-s + 1.23·15-s − 0.676·16-s − 0.0514·17-s − 3.10·18-s − 1.34·19-s + 0.889·20-s − 1.87·21-s − 0.620·22-s + 0.465·23-s − 0.676·24-s − 0.499·25-s − 1.50·26-s + 1.86·27-s − 1.34·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 197 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(14-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 197 ^{s/2} \, \Gamma_{\C}(s+13/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(197\)
Sign: $-1$
Analytic conductor: \(211.244\)
Root analytic conductor: \(14.5342\)
Motivic weight: \(13\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 197,\ (\ :13/2),\ -1)\)

Particular Values

\(L(7)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{15}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad197 \( 1 + 5.84e13T \)
good2 \( 1 + 135.T + 8.19e3T^{2} \)
3 \( 1 - 2.21e3T + 1.59e6T^{2} \)
5 \( 1 - 2.47e4T + 1.22e9T^{2} \)
7 \( 1 + 3.33e5T + 9.68e10T^{2} \)
11 \( 1 - 2.42e6T + 3.45e13T^{2} \)
13 \( 1 - 1.74e7T + 3.02e14T^{2} \)
17 \( 1 + 5.12e6T + 9.90e15T^{2} \)
19 \( 1 + 2.76e8T + 4.20e16T^{2} \)
23 \( 1 - 3.30e8T + 5.04e17T^{2} \)
29 \( 1 + 1.77e9T + 1.02e19T^{2} \)
31 \( 1 + 4.02e9T + 2.44e19T^{2} \)
37 \( 1 - 7.48e9T + 2.43e20T^{2} \)
41 \( 1 + 2.60e10T + 9.25e20T^{2} \)
43 \( 1 - 3.17e10T + 1.71e21T^{2} \)
47 \( 1 + 9.22e10T + 5.46e21T^{2} \)
53 \( 1 + 1.70e11T + 2.60e22T^{2} \)
59 \( 1 + 3.65e10T + 1.04e23T^{2} \)
61 \( 1 - 3.48e11T + 1.61e23T^{2} \)
67 \( 1 + 5.00e11T + 5.48e23T^{2} \)
71 \( 1 + 2.58e11T + 1.16e24T^{2} \)
73 \( 1 + 3.41e11T + 1.67e24T^{2} \)
79 \( 1 - 4.33e11T + 4.66e24T^{2} \)
83 \( 1 + 3.93e12T + 8.87e24T^{2} \)
89 \( 1 + 5.61e12T + 2.19e25T^{2} \)
97 \( 1 - 9.80e11T + 6.73e25T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.456715886295389332757133074047, −8.847506678988323179284605529018, −8.165236172763297691807641565161, −7.06511138100548203635723822167, −6.22808135960662817477308186030, −4.08728088760396877960793265512, −3.08772458981430647830178056362, −2.04926949358347143305661374446, −1.40389092243032014848496805273, 0, 1.40389092243032014848496805273, 2.04926949358347143305661374446, 3.08772458981430647830178056362, 4.08728088760396877960793265512, 6.22808135960662817477308186030, 7.06511138100548203635723822167, 8.165236172763297691807641565161, 8.847506678988323179284605529018, 9.456715886295389332757133074047

Graph of the $Z$-function along the critical line