L(s) = 1 | + (−4.04 + 1.94i)2-s + (−1.44 − 0.694i)3-s + (7.55 − 9.47i)4-s + (1.68 + 2.11i)5-s + 7.18·6-s + (0.423 + 0.204i)7-s + (−4.10 + 17.9i)8-s + (−15.2 − 19.1i)9-s + (−10.9 − 5.25i)10-s + (25.8 − 12.4i)11-s + (−17.4 + 8.41i)12-s + (12.3 + 53.9i)13-s − 2.10·14-s + (−0.961 − 4.21i)15-s + (3.14 + 13.7i)16-s + (25.8 + 32.4i)17-s + ⋯ |
L(s) = 1 | + (−1.42 + 0.688i)2-s + (−0.277 − 0.133i)3-s + (0.944 − 1.18i)4-s + (0.150 + 0.188i)5-s + 0.488·6-s + (0.0228 + 0.0110i)7-s + (−0.181 + 0.795i)8-s + (−0.564 − 0.707i)9-s + (−0.344 − 0.166i)10-s + (0.708 − 0.341i)11-s + (−0.420 + 0.202i)12-s + (0.262 + 1.15i)13-s − 0.0402·14-s + (−0.0165 − 0.0725i)15-s + (0.0491 + 0.215i)16-s + (0.368 + 0.462i)17-s + ⋯ |
Λ(s)=(=(197s/2ΓC(s)L(s)(−0.668+0.743i)Λ(4−s)
Λ(s)=(=(197s/2ΓC(s+3/2)L(s)(−0.668+0.743i)Λ(1−s)
Degree: |
2 |
Conductor: |
197
|
Sign: |
−0.668+0.743i
|
Analytic conductor: |
11.6233 |
Root analytic conductor: |
3.40930 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ197(36,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 197, ( :3/2), −0.668+0.743i)
|
Particular Values
L(2) |
≈ |
0.0301651−0.0677167i |
L(21) |
≈ |
0.0301651−0.0677167i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 197 | 1+(2.33e3−1.47e3i)T |
good | 2 | 1+(4.04−1.94i)T+(4.98−6.25i)T2 |
| 3 | 1+(1.44+0.694i)T+(16.8+21.1i)T2 |
| 5 | 1+(−1.68−2.11i)T+(−27.8+121.i)T2 |
| 7 | 1+(−0.423−0.204i)T+(213.+268.i)T2 |
| 11 | 1+(−25.8+12.4i)T+(829.−1.04e3i)T2 |
| 13 | 1+(−12.3−53.9i)T+(−1.97e3+953.i)T2 |
| 17 | 1+(−25.8−32.4i)T+(−1.09e3+4.78e3i)T2 |
| 19 | 1+71.6T+6.85e3T2 |
| 23 | 1+(136.−65.8i)T+(7.58e3−9.51e3i)T2 |
| 29 | 1+(192.−92.7i)T+(1.52e4−1.90e4i)T2 |
| 31 | 1+(−235.+113.i)T+(1.85e4−2.32e4i)T2 |
| 37 | 1+(−88.8+389.i)T+(−4.56e4−2.19e4i)T2 |
| 41 | 1+(202.+253.i)T+(−1.53e4+6.71e4i)T2 |
| 43 | 1+(228.−109.i)T+(4.95e4−6.21e4i)T2 |
| 47 | 1+(−22.5+98.5i)T+(−9.35e4−4.50e4i)T2 |
| 53 | 1+(410.−515.i)T+(−3.31e4−1.45e5i)T2 |
| 59 | 1+(772.−372.i)T+(1.28e5−1.60e5i)T2 |
| 61 | 1+(416.−200.i)T+(1.41e5−1.77e5i)T2 |
| 67 | 1+(−199.+872.i)T+(−2.70e5−1.30e5i)T2 |
| 71 | 1+(246.+309.i)T+(−7.96e4+3.48e5i)T2 |
| 73 | 1+(49.1−215.i)T+(−3.50e5−1.68e5i)T2 |
| 79 | 1+(4.25−5.33i)T+(−1.09e5−4.80e5i)T2 |
| 83 | 1+55.5T+5.71e5T2 |
| 89 | 1+(−74.5−35.9i)T+(4.39e5+5.51e5i)T2 |
| 97 | 1+(−209.−262.i)T+(−2.03e5+8.89e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.43376823008017191311140534995, −10.47183330653194763588765257764, −9.364169410314021717271423719157, −8.783328264324981775042779051236, −7.70679807737497551123151331520, −6.43464639680630103087370345496, −6.08555693330257012206935273691, −3.90898467406336373355008711555, −1.67846081766722274153740996755, −0.05445054953283462447787568397,
1.55053531776499581254319723181, 2.99895031442001807879555586786, 4.90425347753627730012103357287, 6.31720000751922983485888563702, 7.889964889001539099954381177640, 8.411386765502455783710797944587, 9.644905844276152245550279999244, 10.28381413968529779191723615225, 11.22757838471522135346368149558, 11.92392795803608369315634142861