L(s) = 1 | + (−1.84 − 0.118i)2-s + (−3.90 + 5.60i)3-s + (−4.53 − 0.584i)4-s + (−3.25 + 2.12i)5-s + (7.88 − 9.89i)6-s + (29.1 − 1.87i)7-s + (22.8 + 4.45i)8-s + (−6.79 − 18.4i)9-s + (6.27 − 3.53i)10-s + (5.84 − 19.6i)11-s + (20.9 − 23.1i)12-s + (0.543 − 16.9i)13-s − 54.1·14-s + (0.851 − 26.5i)15-s + (−6.34 − 1.66i)16-s + (16.8 + 16.3i)17-s + ⋯ |
L(s) = 1 | + (−0.653 − 0.0419i)2-s + (−0.752 + 1.07i)3-s + (−0.566 − 0.0730i)4-s + (−0.291 + 0.189i)5-s + (0.536 − 0.673i)6-s + (1.57 − 0.101i)7-s + (1.00 + 0.196i)8-s + (−0.251 − 0.683i)9-s + (0.198 − 0.111i)10-s + (0.160 − 0.539i)11-s + (0.504 − 0.555i)12-s + (0.0115 − 0.361i)13-s − 1.03·14-s + (0.0146 − 0.456i)15-s + (−0.0991 − 0.0260i)16-s + (0.240 + 0.233i)17-s + ⋯ |
Λ(s)=(=(197s/2ΓC(s)L(s)(−0.208−0.977i)Λ(4−s)
Λ(s)=(=(197s/2ΓC(s+3/2)L(s)(−0.208−0.977i)Λ(1−s)
Degree: |
2 |
Conductor: |
197
|
Sign: |
−0.208−0.977i
|
Analytic conductor: |
11.6233 |
Root analytic conductor: |
3.40930 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ197(16,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 197, ( :3/2), −0.208−0.977i)
|
Particular Values
L(2) |
≈ |
0.523773+0.647350i |
L(21) |
≈ |
0.523773+0.647350i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 197 | 1+(2.62e3+857.i)T |
good | 2 | 1+(1.84+0.118i)T+(7.93+1.02i)T2 |
| 3 | 1+(3.90−5.60i)T+(−9.32−25.3i)T2 |
| 5 | 1+(3.25−2.12i)T+(50.5−114.i)T2 |
| 7 | 1+(−29.1+1.87i)T+(340.−43.8i)T2 |
| 11 | 1+(−5.84+19.6i)T+(−1.11e3−726.i)T2 |
| 13 | 1+(−0.543+16.9i)T+(−2.19e3−140.i)T2 |
| 17 | 1+(−16.8−16.3i)T+(157.+4.91e3i)T2 |
| 19 | 1+(−78.1−37.6i)T+(4.27e3+5.36e3i)T2 |
| 23 | 1+(−7.88−48.7i)T+(−1.15e4+3.83e3i)T2 |
| 29 | 1+(43.7−48.2i)T+(−2.34e3−2.42e4i)T2 |
| 31 | 1+(−222.+90.1i)T+(2.14e4−2.07e4i)T2 |
| 37 | 1+(102.−26.9i)T+(4.41e4−2.48e4i)T2 |
| 41 | 1+(−112.−109.i)T+(2.20e3+6.88e4i)T2 |
| 43 | 1+(87.6−295.i)T+(−6.66e4−4.33e4i)T2 |
| 47 | 1+(126.+243.i)T+(−5.93e4+8.51e4i)T2 |
| 53 | 1+(−16.0−166.i)T+(−1.46e5+2.84e4i)T2 |
| 59 | 1+(−18.2−10.2i)T+(1.06e5+1.75e5i)T2 |
| 61 | 1+(−157.−225.i)T+(−7.83e4+2.13e5i)T2 |
| 67 | 1+(−132.−253.i)T+(−1.72e5+2.46e5i)T2 |
| 71 | 1+(−250.−680.i)T+(−2.72e5+2.32e5i)T2 |
| 73 | 1+(−580.+152.i)T+(3.38e5−1.90e5i)T2 |
| 79 | 1+(629.+409.i)T+(1.99e5+4.50e5i)T2 |
| 83 | 1+(181.−87.6i)T+(3.56e5−4.47e5i)T2 |
| 89 | 1+(51.8+20.9i)T+(5.06e5+4.90e5i)T2 |
| 97 | 1+(152.−251.i)T+(−4.22e5−8.09e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.69919663331466956299424335989, −11.19609456410636164659018466379, −10.34833437513532974635568674322, −9.539433428870727892337606354943, −8.326826234322660830510646538920, −7.63511034122059763048917691650, −5.59073334406214201669389453786, −4.87238052760350544500372840681, −3.81810786221146059918818431904, −1.19533846375108161082384430358,
0.64737227994097425712550961505, 1.74391961825812210884572232479, 4.40740262851093328390138295849, 5.30831537430726747893056894794, 6.89750068905353348869486981698, 7.76503337706282301303255708135, 8.473856808207040397847572203714, 9.688382657418484939686701464996, 10.96064628755246284497915381507, 11.83309635680555653509490611071