L(s) = 1 | + (−2.99 + 0.192i)2-s + (−1.86 − 2.67i)3-s + (0.972 − 0.125i)4-s + (10.2 + 6.68i)5-s + (6.09 + 7.63i)6-s + (−26.7 − 1.71i)7-s + (20.6 − 4.02i)8-s + (5.65 − 15.3i)9-s + (−32.0 − 18.0i)10-s + (5.46 + 18.4i)11-s + (−2.15 − 2.36i)12-s + (1.98 + 61.7i)13-s + 80.3·14-s + (−1.28 − 39.9i)15-s + (−68.5 + 17.9i)16-s + (89.0 − 86.2i)17-s + ⋯ |
L(s) = 1 | + (−1.05 + 0.0678i)2-s + (−0.358 − 0.514i)3-s + (0.121 − 0.0156i)4-s + (0.918 + 0.598i)5-s + (0.414 + 0.519i)6-s + (−1.44 − 0.0927i)7-s + (0.912 − 0.177i)8-s + (0.209 − 0.568i)9-s + (−1.01 − 0.570i)10-s + (0.149 + 0.505i)11-s + (−0.0517 − 0.0569i)12-s + (0.0422 + 1.31i)13-s + 1.53·14-s + (−0.0220 − 0.687i)15-s + (−1.07 + 0.280i)16-s + (1.27 − 1.23i)17-s + ⋯ |
Λ(s)=(=(197s/2ΓC(s)L(s)(−0.697+0.716i)Λ(4−s)
Λ(s)=(=(197s/2ΓC(s+3/2)L(s)(−0.697+0.716i)Λ(1−s)
Degree: |
2 |
Conductor: |
197
|
Sign: |
−0.697+0.716i
|
Analytic conductor: |
11.6233 |
Root analytic conductor: |
3.40930 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ197(37,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 197, ( :3/2), −0.697+0.716i)
|
Particular Values
L(2) |
≈ |
0.135584−0.321140i |
L(21) |
≈ |
0.135584−0.321140i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 197 | 1+(2.68e3+673.i)T |
good | 2 | 1+(2.99−0.192i)T+(7.93−1.02i)T2 |
| 3 | 1+(1.86+2.67i)T+(−9.32+25.3i)T2 |
| 5 | 1+(−10.2−6.68i)T+(50.5+114.i)T2 |
| 7 | 1+(26.7+1.71i)T+(340.+43.8i)T2 |
| 11 | 1+(−5.46−18.4i)T+(−1.11e3+726.i)T2 |
| 13 | 1+(−1.98−61.7i)T+(−2.19e3+140.i)T2 |
| 17 | 1+(−89.0+86.2i)T+(157.−4.91e3i)T2 |
| 19 | 1+(−10.6+5.12i)T+(4.27e3−5.36e3i)T2 |
| 23 | 1+(3.56−22.0i)T+(−1.15e4−3.83e3i)T2 |
| 29 | 1+(83.5+91.9i)T+(−2.34e3+2.42e4i)T2 |
| 31 | 1+(236.+95.9i)T+(2.14e4+2.07e4i)T2 |
| 37 | 1+(356.+93.3i)T+(4.41e4+2.48e4i)T2 |
| 41 | 1+(−12.1+11.7i)T+(2.20e3−6.88e4i)T2 |
| 43 | 1+(105.+355.i)T+(−6.66e4+4.33e4i)T2 |
| 47 | 1+(−142.+273.i)T+(−5.93e4−8.51e4i)T2 |
| 53 | 1+(−27.5+285.i)T+(−1.46e5−2.84e4i)T2 |
| 59 | 1+(325.−183.i)T+(1.06e5−1.75e5i)T2 |
| 61 | 1+(−46.4+66.5i)T+(−7.83e4−2.13e5i)T2 |
| 67 | 1+(−179.+344.i)T+(−1.72e5−2.46e5i)T2 |
| 71 | 1+(226.−616.i)T+(−2.72e5−2.32e5i)T2 |
| 73 | 1+(−433.−113.i)T+(3.38e5+1.90e5i)T2 |
| 79 | 1+(359.−233.i)T+(1.99e5−4.50e5i)T2 |
| 83 | 1+(904.+435.i)T+(3.56e5+4.47e5i)T2 |
| 89 | 1+(229.−92.7i)T+(5.06e5−4.90e5i)T2 |
| 97 | 1+(583.+961.i)T+(−4.22e5+8.09e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.62298222669880403486369282170, −10.18566520040050508376634890525, −9.631655524694708313253033894363, −9.116142453755987135515726826446, −7.14879009245963657699518661938, −6.94778488218938882851026272378, −5.68927489714540572492288390593, −3.70208587695999805483577572925, −1.87227510886124834125119487997, −0.24032590404654647741636954460,
1.39873031729724135635394512094, 3.44574378400896675152683966479, 5.22242006648101789842259604985, 5.96439294331689137763231890660, 7.59969747698291144933660058552, 8.701829546251404988974442694755, 9.597291663076891723954581082468, 10.21830839531786094790117007549, 10.78826916638229708156396968988, 12.65584416402048342817134164262