L(s) = 1 | + (−4.92 + 0.316i)2-s + (4.70 + 6.75i)3-s + (16.2 − 2.09i)4-s + (6.63 + 4.31i)5-s + (−25.3 − 31.7i)6-s + (4.33 + 0.278i)7-s + (−40.7 + 7.92i)8-s + (−14.0 + 38.2i)9-s + (−34.0 − 19.1i)10-s + (8.49 + 28.6i)11-s + (90.7 + 99.9i)12-s + (0.892 + 27.8i)13-s − 21.4·14-s + (2.08 + 65.0i)15-s + (71.2 − 18.6i)16-s + (20.1 − 19.5i)17-s + ⋯ |
L(s) = 1 | + (−1.74 + 0.111i)2-s + (0.906 + 1.29i)3-s + (2.03 − 0.262i)4-s + (0.593 + 0.386i)5-s + (−1.72 − 2.16i)6-s + (0.234 + 0.0150i)7-s + (−1.79 + 0.350i)8-s + (−0.521 + 1.41i)9-s + (−1.07 − 0.606i)10-s + (0.232 + 0.784i)11-s + (2.18 + 2.40i)12-s + (0.0190 + 0.593i)13-s − 0.410·14-s + (0.0359 + 1.12i)15-s + (1.11 − 0.291i)16-s + (0.287 − 0.278i)17-s + ⋯ |
Λ(s)=(=(197s/2ΓC(s)L(s)(−0.712−0.701i)Λ(4−s)
Λ(s)=(=(197s/2ΓC(s+3/2)L(s)(−0.712−0.701i)Λ(1−s)
Degree: |
2 |
Conductor: |
197
|
Sign: |
−0.712−0.701i
|
Analytic conductor: |
11.6233 |
Root analytic conductor: |
3.40930 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ197(37,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 197, ( :3/2), −0.712−0.701i)
|
Particular Values
L(2) |
≈ |
0.438272+1.06918i |
L(21) |
≈ |
0.438272+1.06918i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 197 | 1+(−690.+2.67e3i)T |
good | 2 | 1+(4.92−0.316i)T+(7.93−1.02i)T2 |
| 3 | 1+(−4.70−6.75i)T+(−9.32+25.3i)T2 |
| 5 | 1+(−6.63−4.31i)T+(50.5+114.i)T2 |
| 7 | 1+(−4.33−0.278i)T+(340.+43.8i)T2 |
| 11 | 1+(−8.49−28.6i)T+(−1.11e3+726.i)T2 |
| 13 | 1+(−0.892−27.8i)T+(−2.19e3+140.i)T2 |
| 17 | 1+(−20.1+19.5i)T+(157.−4.91e3i)T2 |
| 19 | 1+(−80.5+38.8i)T+(4.27e3−5.36e3i)T2 |
| 23 | 1+(14.0−87.0i)T+(−1.15e4−3.83e3i)T2 |
| 29 | 1+(−150.−165.i)T+(−2.34e3+2.42e4i)T2 |
| 31 | 1+(68.3+27.6i)T+(2.14e4+2.07e4i)T2 |
| 37 | 1+(−27.2−7.14i)T+(4.41e4+2.48e4i)T2 |
| 41 | 1+(295.−286.i)T+(2.20e3−6.88e4i)T2 |
| 43 | 1+(16.3+54.9i)T+(−6.66e4+4.33e4i)T2 |
| 47 | 1+(1.17−2.26i)T+(−5.93e4−8.51e4i)T2 |
| 53 | 1+(−36.6+380.i)T+(−1.46e5−2.84e4i)T2 |
| 59 | 1+(637.−358.i)T+(1.06e5−1.75e5i)T2 |
| 61 | 1+(−119.+172.i)T+(−7.83e4−2.13e5i)T2 |
| 67 | 1+(−379.+726.i)T+(−1.72e5−2.46e5i)T2 |
| 71 | 1+(−212.+578.i)T+(−2.72e5−2.32e5i)T2 |
| 73 | 1+(534.+140.i)T+(3.38e5+1.90e5i)T2 |
| 79 | 1+(153.−99.9i)T+(1.99e5−4.50e5i)T2 |
| 83 | 1+(−429.−207.i)T+(3.56e5+4.47e5i)T2 |
| 89 | 1+(318.−128.i)T+(5.06e5−4.90e5i)T2 |
| 97 | 1+(918.+1.51e3i)T+(−4.22e5+8.09e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.84291739408533154930333740897, −10.84255527364064020063733131102, −9.880428758730323903528596537389, −9.604765524138257422623274854706, −8.747517470304135563672912253322, −7.72419869585069546113211109250, −6.63676587101542698735825895816, −4.85393514394061930547124716087, −3.12094497843744974365688498199, −1.78638302277983958611828827575,
0.831095595483673538537545759871, 1.75055654367911077478542969300, 2.99809799392713960474821572482, 5.88216686646884498162266190261, 7.01097095088246720929052401549, 8.003542865686881627733911132757, 8.465841055198067681370337159849, 9.396991285928697267041549062268, 10.34963145512581520382522243138, 11.58422525750448427240860620655